| L(s) = 1 | + (−0.866 − 0.5i)5-s + (−0.866 − 0.5i)7-s − i·11-s + (0.5 + 0.866i)17-s + (−0.866 + 0.5i)19-s + (−0.5 − 0.866i)23-s + (0.5 + 0.866i)25-s + 29-s + (0.866 + 0.5i)31-s + (0.5 + 0.866i)35-s + (0.866 + 0.5i)37-s + (0.866 − 0.5i)41-s + (−0.5 + 0.866i)43-s + (0.866 − 0.5i)47-s + (0.5 + 0.866i)49-s + ⋯ |
| L(s) = 1 | + (−0.866 − 0.5i)5-s + (−0.866 − 0.5i)7-s − i·11-s + (0.5 + 0.866i)17-s + (−0.866 + 0.5i)19-s + (−0.5 − 0.866i)23-s + (0.5 + 0.866i)25-s + 29-s + (0.866 + 0.5i)31-s + (0.5 + 0.866i)35-s + (0.866 + 0.5i)37-s + (0.866 − 0.5i)41-s + (−0.5 + 0.866i)43-s + (0.866 − 0.5i)47-s + (0.5 + 0.866i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.612 + 0.790i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.612 + 0.790i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7307205106 + 0.3580743777i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7307205106 + 0.3580743777i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8031793198 + 0.04865367822i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8031793198 + 0.04865367822i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 - iT \) |
| 17 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + T \) |
| 31 | \( 1 + (0.866 + 0.5i)T \) |
| 37 | \( 1 + (0.866 + 0.5i)T \) |
| 41 | \( 1 + (0.866 - 0.5i)T \) |
| 43 | \( 1 + (-0.5 + 0.866i)T \) |
| 47 | \( 1 + (0.866 - 0.5i)T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 - iT \) |
| 61 | \( 1 + (-0.5 + 0.866i)T \) |
| 67 | \( 1 + (-0.866 + 0.5i)T \) |
| 71 | \( 1 + (-0.866 + 0.5i)T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 + (0.5 + 0.866i)T \) |
| 83 | \( 1 + (-0.866 + 0.5i)T \) |
| 89 | \( 1 + (0.866 + 0.5i)T \) |
| 97 | \( 1 + (-0.866 - 0.5i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.53517199163784442665498678749, −23.01507813122017555555451961755, −22.00865670921567964426595014284, −21.44375441670244655084479710437, −20.13480038968324204315908711651, −19.27950190759781637733459761396, −18.88874326486178787150069913454, −17.9065232828377677364200937458, −16.63597094209213301948311053329, −15.89997644502956020504226141192, −15.30082949652061098775677698258, −14.19304005607385235897147386655, −13.3197187254039970659731468250, −12.20903038219655288228952794268, −11.53654025411286604296074464579, −10.59563352696078726468780600233, −9.53680382513130127766887876438, −8.55771678279225590123539998757, −7.62561824960623199801477797843, −6.57631448170124113769105001864, −5.76915104920007460159822353954, −4.37503082988750831705949101589, −3.29629380794678055153346939990, −2.58397393837683648934193656431, −0.53542920986895858854598697817,
1.119978928463557079279523896076, 2.69157102159371486247757858726, 3.993926581185943803481580411423, 4.49795220725772240320313337276, 6.00701590902740384950338899814, 6.953660277522845195073702882884, 7.923352661064064021068673655711, 8.76345330829754931358869562867, 10.00253869806488884882824288690, 10.57939729812393049532495559728, 12.06214514011366928949755068116, 12.47053438697529089088476923709, 13.373186567865993937468831595118, 14.633075517150705812374674675205, 15.36720106821073198730628711630, 16.3567921849948050940028775592, 16.88484012154001881749049663372, 17.97892675850707659135832544412, 19.17677701391436988946326669532, 19.654119605754151735238330710626, 20.46037908197803716476510152989, 21.33547865812743825825361827505, 22.5737290124973908509274380569, 23.19116242627947143218454596811, 23.744882795232745322648341036197