L(s) = 1 | + (−0.587 + 0.809i)2-s + (−0.309 − 0.951i)4-s + (0.743 + 0.669i)7-s + (0.951 + 0.309i)8-s + (0.978 + 0.207i)11-s + (−0.994 + 0.104i)13-s + (−0.978 + 0.207i)14-s + (−0.809 + 0.587i)16-s + (0.207 + 0.978i)17-s + (0.104 − 0.994i)19-s + (−0.743 + 0.669i)22-s + (0.951 + 0.309i)23-s + (0.5 − 0.866i)26-s + (0.406 − 0.913i)28-s + (−0.809 − 0.587i)29-s + ⋯ |
L(s) = 1 | + (−0.587 + 0.809i)2-s + (−0.309 − 0.951i)4-s + (0.743 + 0.669i)7-s + (0.951 + 0.309i)8-s + (0.978 + 0.207i)11-s + (−0.994 + 0.104i)13-s + (−0.978 + 0.207i)14-s + (−0.809 + 0.587i)16-s + (0.207 + 0.978i)17-s + (0.104 − 0.994i)19-s + (−0.743 + 0.669i)22-s + (0.951 + 0.309i)23-s + (0.5 − 0.866i)26-s + (0.406 − 0.913i)28-s + (−0.809 − 0.587i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0768 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0768 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7735146410 + 0.7161595703i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7735146410 + 0.7161595703i\) |
\(L(1)\) |
\(\approx\) |
\(0.7947125635 + 0.3863744349i\) |
\(L(1)\) |
\(\approx\) |
\(0.7947125635 + 0.3863744349i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (-0.587 + 0.809i)T \) |
| 7 | \( 1 + (0.743 + 0.669i)T \) |
| 11 | \( 1 + (0.978 + 0.207i)T \) |
| 13 | \( 1 + (-0.994 + 0.104i)T \) |
| 17 | \( 1 + (0.207 + 0.978i)T \) |
| 19 | \( 1 + (0.104 - 0.994i)T \) |
| 23 | \( 1 + (0.951 + 0.309i)T \) |
| 29 | \( 1 + (-0.809 - 0.587i)T \) |
| 37 | \( 1 + (0.866 - 0.5i)T \) |
| 41 | \( 1 + (-0.913 + 0.406i)T \) |
| 43 | \( 1 + (0.994 + 0.104i)T \) |
| 47 | \( 1 + (0.587 + 0.809i)T \) |
| 53 | \( 1 + (-0.743 + 0.669i)T \) |
| 59 | \( 1 + (0.913 + 0.406i)T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 + (-0.866 - 0.5i)T \) |
| 71 | \( 1 + (-0.669 - 0.743i)T \) |
| 73 | \( 1 + (-0.207 + 0.978i)T \) |
| 79 | \( 1 + (0.978 - 0.207i)T \) |
| 83 | \( 1 + (0.406 + 0.913i)T \) |
| 89 | \( 1 + (0.309 + 0.951i)T \) |
| 97 | \( 1 + (-0.951 + 0.309i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.61732812174510575429929255692, −22.51968971312614412026038945324, −21.98880923227795948902265123176, −20.74761201587122536805387613580, −20.440379642846167082840383082120, −19.41509232664706402936105387095, −18.67255875269339016684655190305, −17.695929029362494435300947479046, −16.94182711835261260304330425811, −16.40203132536059155203653941246, −14.762392844836307182753126619065, −14.10712643556632994308835479574, −13.05214025565850420774356151010, −11.99626693129144774832272042453, −11.40813990665567643599271754042, −10.421896816713143951130476807245, −9.5898910877490079236558377219, −8.67762919864732393178225470268, −7.62008140157829439552510128466, −6.948627398768704782825275798074, −5.20123672046209994458552776982, −4.22180845176736284543209208018, −3.22154212502422275641028054138, −1.93886727622013437793610966850, −0.85882894883945104226728184514,
1.24951712197598523294695540940, 2.38632191720797549374219898531, 4.22517408989108324835353089225, 5.13490358467897374183321698587, 6.088129528751954526485158649383, 7.12682366678524861476120068886, 7.94920176398476701452334672115, 9.02694890231827465606245742731, 9.52572383764283691183520913326, 10.82518473108718940828226280171, 11.64473922726974466551860310428, 12.7833177342427470315425426833, 14.00399143247386502486761211237, 14.96231781846283742211884056891, 15.14532520258130464551321381715, 16.520885103349716240090934550393, 17.3348044002150243790910438278, 17.76493492120807329350718418012, 19.03041024905650493100502259489, 19.44675927060998569774601820900, 20.55126024753120750013363193551, 21.78011099031864380210364671669, 22.36234552020483748009349237554, 23.5816584203360583230295846028, 24.25101887978682726466633395022