L(s) = 1 | − i·2-s − 4-s + (−0.866 − 0.5i)7-s + i·8-s + (0.5 + 0.866i)11-s + (−0.866 + 0.5i)13-s + (−0.5 + 0.866i)14-s + 16-s + (0.866 + 0.5i)17-s + (0.5 − 0.866i)19-s + (0.866 − 0.5i)22-s + i·23-s + (0.5 + 0.866i)26-s + (0.866 + 0.5i)28-s + 29-s + ⋯ |
L(s) = 1 | − i·2-s − 4-s + (−0.866 − 0.5i)7-s + i·8-s + (0.5 + 0.866i)11-s + (−0.866 + 0.5i)13-s + (−0.5 + 0.866i)14-s + 16-s + (0.866 + 0.5i)17-s + (0.5 − 0.866i)19-s + (0.866 − 0.5i)22-s + i·23-s + (0.5 + 0.866i)26-s + (0.866 + 0.5i)28-s + 29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.816 - 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.816 - 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9722329455 - 0.3093423487i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9722329455 - 0.3093423487i\) |
\(L(1)\) |
\(\approx\) |
\(0.8398336854 - 0.3311239131i\) |
\(L(1)\) |
\(\approx\) |
\(0.8398336854 - 0.3311239131i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 - iT \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (-0.866 + 0.5i)T \) |
| 17 | \( 1 + (0.866 + 0.5i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + iT \) |
| 29 | \( 1 + T \) |
| 37 | \( 1 + (-0.866 - 0.5i)T \) |
| 41 | \( 1 + (0.5 + 0.866i)T \) |
| 43 | \( 1 + (0.866 + 0.5i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (0.866 - 0.5i)T \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 + (0.866 - 0.5i)T \) |
| 71 | \( 1 + (0.5 + 0.866i)T \) |
| 73 | \( 1 + (-0.866 + 0.5i)T \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.866 - 0.5i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.22399533619608669432471001426, −23.03128911378688203782579697569, −22.448323154152440452567988302243, −21.80980688139685060114681282587, −20.632139198876334965328739367593, −19.258404206735939379546577761409, −18.90516186671110070167784758793, −17.85624080429982117307107076046, −16.843993859623710184679450302219, −16.24182757741955069032797274429, −15.47903906598884789003609771794, −14.386366583878020266065179736661, −13.872127687267387976042669787780, −12.57173639458931353007176472186, −12.10638696551636524645961764248, −10.40398604691028648943683337359, −9.615180837171110396657772997512, −8.735030603095512390075982152524, −7.80748337744913096463569883034, −6.77692125264339115348707990903, −5.90809819144590899289325514506, −5.14373955780828410204663293922, −3.77884678809861920096522450552, −2.82742024252839607521723233870, −0.73843264581849637382546737246,
1.05603058239151500335569611416, 2.33659620531022492683132352168, 3.42429745329091272941523820799, 4.317297815449040487860254849464, 5.35660710101200215808095882542, 6.76450369124119947295696288323, 7.68563064350517383142846699081, 9.11051052272399294996578333439, 9.73779354317884756303168091817, 10.42246970264229610862383830069, 11.66857153716312043020173930303, 12.31017873550414314624613962237, 13.17444519773188692867609272183, 14.05840300891069923951529439367, 14.90485227697336200791361206865, 16.17601365753880566598246072616, 17.22474156385797152564538289164, 17.755344771376302600630278538990, 19.06646752860281196493824950670, 19.60728451221053521970059147337, 20.1702357381410495375071567152, 21.348908385073278486761067630679, 21.94968827175458523751737530239, 22.92818184467929301838805738508, 23.38910841226351465317188670976