L(s) = 1 | + (−0.809 + 0.587i)2-s + (0.309 − 0.951i)4-s + (−0.669 − 0.743i)7-s + (0.309 + 0.951i)8-s + (0.978 − 0.207i)11-s + (0.104 − 0.994i)13-s + (0.978 + 0.207i)14-s + (−0.809 − 0.587i)16-s + (−0.978 − 0.207i)17-s + (−0.104 − 0.994i)19-s + (−0.669 + 0.743i)22-s + (0.309 + 0.951i)23-s + (0.5 + 0.866i)26-s + (−0.913 + 0.406i)28-s + (0.809 − 0.587i)29-s + ⋯ |
L(s) = 1 | + (−0.809 + 0.587i)2-s + (0.309 − 0.951i)4-s + (−0.669 − 0.743i)7-s + (0.309 + 0.951i)8-s + (0.978 − 0.207i)11-s + (0.104 − 0.994i)13-s + (0.978 + 0.207i)14-s + (−0.809 − 0.587i)16-s + (−0.978 − 0.207i)17-s + (−0.104 − 0.994i)19-s + (−0.669 + 0.743i)22-s + (0.309 + 0.951i)23-s + (0.5 + 0.866i)26-s + (−0.913 + 0.406i)28-s + (0.809 − 0.587i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.807 - 0.589i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.807 - 0.589i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1611593850 - 0.4941295280i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1611593850 - 0.4941295280i\) |
\(L(1)\) |
\(\approx\) |
\(0.6373965637 - 0.04351016849i\) |
\(L(1)\) |
\(\approx\) |
\(0.6373965637 - 0.04351016849i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (-0.809 + 0.587i)T \) |
| 7 | \( 1 + (-0.669 - 0.743i)T \) |
| 11 | \( 1 + (0.978 - 0.207i)T \) |
| 13 | \( 1 + (0.104 - 0.994i)T \) |
| 17 | \( 1 + (-0.978 - 0.207i)T \) |
| 19 | \( 1 + (-0.104 - 0.994i)T \) |
| 23 | \( 1 + (0.309 + 0.951i)T \) |
| 29 | \( 1 + (0.809 - 0.587i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
| 41 | \( 1 + (-0.913 - 0.406i)T \) |
| 43 | \( 1 + (0.104 + 0.994i)T \) |
| 47 | \( 1 + (-0.809 - 0.587i)T \) |
| 53 | \( 1 + (0.669 - 0.743i)T \) |
| 59 | \( 1 + (-0.913 + 0.406i)T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.669 + 0.743i)T \) |
| 73 | \( 1 + (0.978 - 0.207i)T \) |
| 79 | \( 1 + (-0.978 - 0.207i)T \) |
| 83 | \( 1 + (0.913 + 0.406i)T \) |
| 89 | \( 1 + (-0.309 + 0.951i)T \) |
| 97 | \( 1 + (-0.309 + 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.275063391996909930418005186682, −22.88665084501305775964114746775, −22.069859724385366572672290861235, −21.50739482420322693296973059665, −20.40797844878409515515243521979, −19.666450213023679060983964873613, −18.856950894577641401326423557088, −18.29356444283858680642487081070, −17.11658723101055338288150685531, −16.50953282588268048109763717813, −15.60845865263448153707711365691, −14.51441475401951185006765175469, −13.31939012010979582018613048624, −12.308029002116256623900399659091, −11.80866837737639423477301034582, −10.73360088671716037283879146334, −9.72291894424097983739306077494, −8.98731570682880320415019965446, −8.31573353706867106682834695076, −6.79617467673364159382997445825, −6.3643323343600213845692345740, −4.54994032813225607383686670315, −3.54308298449007201432722475566, −2.39200704271145029784521745963, −1.407208273860028475317715453630,
0.19979419928242942029260944549, 1.156195695663866191227426975883, 2.70650059516113851016222051160, 4.04912783471355132699125113680, 5.31156892894791535604841106158, 6.48022447664305400675217762997, 7.01624067461434939130424192295, 8.125170210631779762358336767609, 9.11098452922787935171202239004, 9.84576684779757733673472068735, 10.818199708571521865169761057373, 11.59603127357271918803651463688, 13.1081052469811192444328855050, 13.78579935352661216505583353504, 14.92109812575013558541357064296, 15.69531772160139900188013902934, 16.48320485868794434375410678149, 17.46099417787656229062324483225, 17.82920773614027747984763670456, 19.236139471255202790035596110777, 19.72233829115107750339080476754, 20.3414760968180591502437226833, 21.74572753077127205237001089458, 22.755938205316159317122273738422, 23.36782142002062400083827317156