Properties

Label 1-4643-4643.4642-r1-0-0
Degree $1$
Conductor $4643$
Sign $1$
Analytic cond. $498.959$
Root an. cond. $498.959$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s − 7-s − 8-s + 9-s + 10-s − 11-s + 12-s − 13-s + 14-s − 15-s + 16-s + 17-s − 18-s − 19-s − 20-s − 21-s + 22-s + 23-s − 24-s + 25-s + 26-s + 27-s − 28-s + ⋯
L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s − 7-s − 8-s + 9-s + 10-s − 11-s + 12-s − 13-s + 14-s − 15-s + 16-s + 17-s − 18-s − 19-s − 20-s − 21-s + 22-s + 23-s − 24-s + 25-s + 26-s + 27-s − 28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4643 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4643 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(4643\)
Sign: $1$
Analytic conductor: \(498.959\)
Root analytic conductor: \(498.959\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{4643} (4642, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((1,\ 4643,\ (1:\ ),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6045112143\)
\(L(\frac12)\) \(\approx\) \(0.6045112143\)
\(L(1)\) \(\approx\) \(0.5993684564\)
\(L(1)\) \(\approx\) \(0.5993684564\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad4643 \( 1 \)
good2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 - T \)
13 \( 1 - T \)
17 \( 1 + T \)
19 \( 1 - T \)
23 \( 1 + T \)
29 \( 1 - T \)
31 \( 1 + T \)
37 \( 1 - T \)
41 \( 1 + T \)
43 \( 1 + T \)
47 \( 1 - T \)
53 \( 1 - T \)
59 \( 1 - T \)
61 \( 1 - T \)
67 \( 1 + T \)
71 \( 1 + T \)
73 \( 1 - T \)
79 \( 1 + T \)
83 \( 1 - T \)
89 \( 1 - T \)
97 \( 1 - T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.36022691774310851115869218040, −17.2546633805338682003166672921, −16.65451154656901338486064126330, −15.93890144420522895511895760045, −15.45459154936457155375301339312, −14.94963954716908054306743047316, −14.24641044126571751010854771380, −13.06382668848002557094060070767, −12.55881664541429990566137757148, −12.10678558555104852419514107772, −10.86756340486381815159654295540, −10.512431699292164093626242058302, −9.549978982512850488112649461301, −9.302876346795195698994090848440, −8.20122762705611411941139153453, −7.95035119168315384764920306114, −7.166092150268481573303356057097, −6.73310178716362934550541513889, −5.57472797641244932037389154437, −4.54842941159274308915042095119, −3.5927382595576280341575734682, −2.90129521047993163051806993730, −2.52758596439009740550869087980, −1.34675217971808866490926731793, −0.30303888472367931511787100270, 0.30303888472367931511787100270, 1.34675217971808866490926731793, 2.52758596439009740550869087980, 2.90129521047993163051806993730, 3.5927382595576280341575734682, 4.54842941159274308915042095119, 5.57472797641244932037389154437, 6.73310178716362934550541513889, 7.166092150268481573303356057097, 7.95035119168315384764920306114, 8.20122762705611411941139153453, 9.302876346795195698994090848440, 9.549978982512850488112649461301, 10.512431699292164093626242058302, 10.86756340486381815159654295540, 12.10678558555104852419514107772, 12.55881664541429990566137757148, 13.06382668848002557094060070767, 14.24641044126571751010854771380, 14.94963954716908054306743047316, 15.45459154936457155375301339312, 15.93890144420522895511895760045, 16.65451154656901338486064126330, 17.2546633805338682003166672921, 18.36022691774310851115869218040

Graph of the $Z$-function along the critical line