L(s) = 1 | + (−0.0871 + 0.996i)2-s + (−0.984 − 0.173i)4-s + (−0.999 − 0.0436i)5-s + (0.537 + 0.843i)7-s + (0.258 − 0.965i)8-s + (0.130 − 0.991i)10-s + (0.0436 + 0.999i)11-s + (−0.642 + 0.766i)13-s + (−0.887 + 0.461i)14-s + (0.939 + 0.342i)16-s + (0.965 + 0.258i)19-s + (0.976 + 0.216i)20-s + (−0.999 − 0.0436i)22-s + (0.976 − 0.216i)23-s + (0.996 + 0.0871i)25-s + (−0.707 − 0.707i)26-s + ⋯ |
L(s) = 1 | + (−0.0871 + 0.996i)2-s + (−0.984 − 0.173i)4-s + (−0.999 − 0.0436i)5-s + (0.537 + 0.843i)7-s + (0.258 − 0.965i)8-s + (0.130 − 0.991i)10-s + (0.0436 + 0.999i)11-s + (−0.642 + 0.766i)13-s + (−0.887 + 0.461i)14-s + (0.939 + 0.342i)16-s + (0.965 + 0.258i)19-s + (0.976 + 0.216i)20-s + (−0.999 − 0.0436i)22-s + (0.976 − 0.216i)23-s + (0.996 + 0.0871i)25-s + (−0.707 − 0.707i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.701 - 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.701 - 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.3526297113 + 0.8420359978i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.3526297113 + 0.8420359978i\) |
\(L(1)\) |
\(\approx\) |
\(0.5529350035 + 0.5601918748i\) |
\(L(1)\) |
\(\approx\) |
\(0.5529350035 + 0.5601918748i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (-0.0871 + 0.996i)T \) |
| 5 | \( 1 + (-0.999 - 0.0436i)T \) |
| 7 | \( 1 + (0.537 + 0.843i)T \) |
| 11 | \( 1 + (0.0436 + 0.999i)T \) |
| 13 | \( 1 + (-0.642 + 0.766i)T \) |
| 19 | \( 1 + (0.965 + 0.258i)T \) |
| 23 | \( 1 + (0.976 - 0.216i)T \) |
| 29 | \( 1 + (-0.953 + 0.300i)T \) |
| 31 | \( 1 + (0.843 + 0.537i)T \) |
| 37 | \( 1 + (0.608 + 0.793i)T \) |
| 41 | \( 1 + (0.953 + 0.300i)T \) |
| 43 | \( 1 + (0.422 + 0.906i)T \) |
| 47 | \( 1 + (-0.984 + 0.173i)T \) |
| 53 | \( 1 + (-0.707 + 0.707i)T \) |
| 59 | \( 1 + (-0.906 - 0.422i)T \) |
| 61 | \( 1 + (-0.537 - 0.843i)T \) |
| 67 | \( 1 + (-0.766 - 0.642i)T \) |
| 71 | \( 1 + (0.608 + 0.793i)T \) |
| 73 | \( 1 + (-0.130 - 0.991i)T \) |
| 79 | \( 1 + (-0.887 - 0.461i)T \) |
| 83 | \( 1 + (0.0871 - 0.996i)T \) |
| 89 | \( 1 + (-0.866 + 0.5i)T \) |
| 97 | \( 1 + (0.737 + 0.675i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.90127712791395448386870143217, −22.45972128591992606038022426716, −21.27275978737056170871096661002, −20.53432199505191425755927996883, −19.74255257389243496127839854374, −19.18441272400895891316998166324, −18.206199047233060362073888487546, −17.27384857745514577320719307490, −16.47181080545672613506793610549, −15.23416840251294216853748177686, −14.30267993581524565134342909021, −13.42938704705651053924859676495, −12.53954712810847112675088892327, −11.39083922457654103241642381219, −11.121460727702675549573340595398, −10.06612846132036070641220968745, −8.94968883442833109673011273589, −7.92310834226212012384997349969, −7.360833599412636279387240923265, −5.51970488069663531172657279058, −4.52608830223940746879206018761, −3.60948693583698044835197449527, −2.766680407197620322867285012962, −1.069598814737074439524031836240, −0.31554627282345216817278729822,
1.383723852747531950926167446444, 3.06550958478335921311735361262, 4.55819430505834916209362640409, 4.89822476129989799901071562670, 6.287243300054372346928771574306, 7.350123952121952120974119272895, 7.89935493252611356067424130938, 9.00765873834218348629396011669, 9.67418272057797779628532306219, 11.161138920298188720184183309775, 12.11230922533970729498004542314, 12.81241970557879643092174364114, 14.251247044676088537048462176343, 14.86396319563550752257697069050, 15.52197947372370691773392533513, 16.37290144353455709383988815663, 17.27450102688013442664863635435, 18.2278418154719743022096265139, 18.8885467373573896119671699010, 19.77908349406661220377971956461, 20.90238348909570714719464111390, 21.98715450712832195610856927852, 22.7795918764381114655883729097, 23.4549266212719054035169644554, 24.50354567970616820668127176694