L(s) = 1 | + (0.819 − 0.573i)2-s + (0.342 − 0.939i)4-s + (0.887 + 0.461i)5-s + (−0.0436 + 0.999i)7-s + (−0.258 − 0.965i)8-s + (0.991 − 0.130i)10-s + (0.461 + 0.887i)11-s + (0.984 − 0.173i)13-s + (0.537 + 0.843i)14-s + (−0.766 − 0.642i)16-s + (−0.965 + 0.258i)19-s + (0.737 − 0.675i)20-s + (0.887 + 0.461i)22-s + (0.737 + 0.675i)23-s + (0.573 + 0.819i)25-s + (0.707 − 0.707i)26-s + ⋯ |
L(s) = 1 | + (0.819 − 0.573i)2-s + (0.342 − 0.939i)4-s + (0.887 + 0.461i)5-s + (−0.0436 + 0.999i)7-s + (−0.258 − 0.965i)8-s + (0.991 − 0.130i)10-s + (0.461 + 0.887i)11-s + (0.984 − 0.173i)13-s + (0.537 + 0.843i)14-s + (−0.766 − 0.642i)16-s + (−0.965 + 0.258i)19-s + (0.737 − 0.675i)20-s + (0.887 + 0.461i)22-s + (0.737 + 0.675i)23-s + (0.573 + 0.819i)25-s + (0.707 − 0.707i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.970 + 0.239i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.970 + 0.239i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(4.046628719 + 0.4910558444i\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.046628719 + 0.4910558444i\) |
\(L(1)\) |
\(\approx\) |
\(2.045254556 - 0.1804704957i\) |
\(L(1)\) |
\(\approx\) |
\(2.045254556 - 0.1804704957i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (0.819 - 0.573i)T \) |
| 5 | \( 1 + (0.887 + 0.461i)T \) |
| 7 | \( 1 + (-0.0436 + 0.999i)T \) |
| 11 | \( 1 + (0.461 + 0.887i)T \) |
| 13 | \( 1 + (0.984 - 0.173i)T \) |
| 19 | \( 1 + (-0.965 + 0.258i)T \) |
| 23 | \( 1 + (0.737 + 0.675i)T \) |
| 29 | \( 1 + (-0.976 + 0.216i)T \) |
| 31 | \( 1 + (-0.999 + 0.0436i)T \) |
| 37 | \( 1 + (0.793 + 0.608i)T \) |
| 41 | \( 1 + (0.976 + 0.216i)T \) |
| 43 | \( 1 + (0.996 - 0.0871i)T \) |
| 47 | \( 1 + (0.342 + 0.939i)T \) |
| 53 | \( 1 + (0.707 + 0.707i)T \) |
| 59 | \( 1 + (-0.0871 + 0.996i)T \) |
| 61 | \( 1 + (0.0436 - 0.999i)T \) |
| 67 | \( 1 + (-0.173 - 0.984i)T \) |
| 71 | \( 1 + (0.793 + 0.608i)T \) |
| 73 | \( 1 + (-0.991 - 0.130i)T \) |
| 79 | \( 1 + (0.537 - 0.843i)T \) |
| 83 | \( 1 + (-0.819 + 0.573i)T \) |
| 89 | \( 1 + (-0.866 - 0.5i)T \) |
| 97 | \( 1 + (0.300 - 0.953i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.76810905073397530937876180714, −22.92372142265347991200904942190, −22.02455473559594441467835065301, −21.1394649619829640677063903155, −20.68003640982813494959662794729, −19.62611417390942851934220777501, −18.32322061577977799774233325842, −17.269693986858172410757742006346, −16.68617686306339953214157639976, −16.11647389985705957039518654955, −14.72916577193288289088458859104, −14.07054249168745315553139845798, −13.21172455682616138408407958627, −12.82417343217175668784475894113, −11.30408550027118072640447549384, −10.68167070680779338562073496265, −9.16502525777453775262968848338, −8.47160618614131318614790347897, −7.21647703500962335993776048324, −6.29674612106406530300236918592, −5.61337380575339486722032916338, −4.36523387672018365109785049419, −3.634971625854650797513023280275, −2.22495082917664409670268389268, −0.81159338976933928545556052139,
1.429403654019517000860241279108, 2.23122833484638759677408794691, 3.244792533131133820199006121209, 4.42768629494461581051423356519, 5.672644514704744051115670109, 6.12136445113523525228252127767, 7.240546996015517068722028555207, 8.99453815650934858065238215851, 9.57884760281136244343808698032, 10.72022509145637034124941744105, 11.37913906233852091362199797999, 12.61319574465326646787440554977, 13.04768145255332337321077004003, 14.195322569732107624864976871284, 14.9143345787360317437750848138, 15.544152461475761902816479310951, 16.875154786818034992791605141090, 18.04773778828877383373360132141, 18.62059116068049746459356669485, 19.54304467820712150533039761956, 20.667192788671006965883128795069, 21.24888899453002875248713817438, 22.044858398798486042464633506477, 22.69456265330985385217265332017, 23.498260413564587394137812585098