L(s) = 1 | + (0.589 + 0.807i)2-s + (−0.303 + 0.952i)4-s + (0.0938 + 0.995i)5-s + (0.147 + 0.989i)7-s + (−0.948 + 0.316i)8-s + (−0.748 + 0.663i)10-s + (−0.830 + 0.556i)11-s + (−0.711 + 0.702i)14-s + (−0.815 − 0.579i)16-s + (0.948 − 0.316i)17-s − 19-s + (−0.977 − 0.213i)20-s + (−0.939 − 0.342i)22-s + (0.766 − 0.642i)23-s + (−0.982 + 0.186i)25-s + ⋯ |
L(s) = 1 | + (0.589 + 0.807i)2-s + (−0.303 + 0.952i)4-s + (0.0938 + 0.995i)5-s + (0.147 + 0.989i)7-s + (−0.948 + 0.316i)8-s + (−0.748 + 0.663i)10-s + (−0.830 + 0.556i)11-s + (−0.711 + 0.702i)14-s + (−0.815 − 0.579i)16-s + (0.948 − 0.316i)17-s − 19-s + (−0.977 − 0.213i)20-s + (−0.939 − 0.342i)22-s + (0.766 − 0.642i)23-s + (−0.982 + 0.186i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4563 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.805 - 0.592i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4563 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.805 - 0.592i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.002594473776 + 0.0008508032416i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.002594473776 + 0.0008508032416i\) |
\(L(1)\) |
\(\approx\) |
\(0.7420923972 + 0.7685628382i\) |
\(L(1)\) |
\(\approx\) |
\(0.7420923972 + 0.7685628382i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.589 + 0.807i)T \) |
| 5 | \( 1 + (0.0938 + 0.995i)T \) |
| 7 | \( 1 + (0.147 + 0.989i)T \) |
| 11 | \( 1 + (-0.830 + 0.556i)T \) |
| 17 | \( 1 + (0.948 - 0.316i)T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (0.766 - 0.642i)T \) |
| 29 | \( 1 + (-0.589 - 0.807i)T \) |
| 31 | \( 1 + (-0.653 + 0.757i)T \) |
| 37 | \( 1 + (0.354 - 0.935i)T \) |
| 41 | \( 1 + (0.452 - 0.891i)T \) |
| 43 | \( 1 + (-0.982 + 0.186i)T \) |
| 47 | \( 1 + (0.673 - 0.739i)T \) |
| 53 | \( 1 + (-0.748 - 0.663i)T \) |
| 59 | \( 1 + (0.815 - 0.579i)T \) |
| 61 | \( 1 + (-0.999 + 0.0268i)T \) |
| 67 | \( 1 + (0.991 - 0.133i)T \) |
| 71 | \( 1 + (-0.799 - 0.600i)T \) |
| 73 | \( 1 + (-0.278 + 0.960i)T \) |
| 79 | \( 1 + (-0.303 - 0.952i)T \) |
| 83 | \( 1 + (-0.998 - 0.0536i)T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.909 + 0.416i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.604420986938834874303915494486, −16.8403640073306956873666616459, −16.45682744292152207502008585664, −15.46791257403535207635874331115, −14.80796443348278839886965152294, −14.055708428465560167680757088184, −13.31550171341955098863953026477, −12.992401084309203062464058552205, −12.41124283635678437594880347699, −11.40473411634787811390160627678, −10.9619604517985046405425898763, −10.19731376531896668908193497477, −9.623202323680824792725605352331, −8.78487237692031940248609706674, −8.06559138360236965675911738810, −7.29818394386954093734772425915, −6.17156926426004602585220944999, −5.544381471843432778650304210132, −4.86931814930467182356829474865, −4.21433687533266743114824005287, −3.49610243484120178352967024629, −2.7119057094728604984905176038, −1.547777267295458854360031860248, −1.12203985685357229475984096010, −0.000583931557386782496966370372,
2.01200312324906547493063118194, 2.562496972086094657291941569888, 3.279295620760767259973087731171, 4.126801728733055297975427453468, 5.11202212104567530008299375068, 5.56721564666844629573772788069, 6.32521096796324299935650849355, 7.03697215877942873361479241715, 7.65358910867034061772063212405, 8.346488053146147144575775024352, 9.12488683890588496271031771187, 9.91304159987903729234667347362, 10.77048060049824126960777921461, 11.46170330799387842672774477709, 12.32489911272916763275336529743, 12.757422401305145296899256423332, 13.52257557112863960812418928127, 14.480757875846175029718309129262, 14.7367191037367027022530976794, 15.34943296540565420171833432286, 15.93569438635467074419192222524, 16.724200914207148534712645675046, 17.54089312458857022135613466059, 18.06462976548772013190239577779, 18.73831738727772835712629920381