L(s) = 1 | + (0.891 − 0.452i)2-s + (0.589 − 0.807i)4-s + (0.213 + 0.977i)5-s + (−0.186 − 0.982i)7-s + (0.160 − 0.987i)8-s + (0.632 + 0.774i)10-s + (−0.291 + 0.956i)11-s + (−0.611 − 0.791i)14-s + (−0.303 − 0.952i)16-s + (−0.354 − 0.935i)17-s + (−0.866 + 0.5i)19-s + (0.914 + 0.404i)20-s + (0.173 + 0.984i)22-s + (0.173 + 0.984i)23-s + (−0.909 + 0.416i)25-s + ⋯ |
L(s) = 1 | + (0.891 − 0.452i)2-s + (0.589 − 0.807i)4-s + (0.213 + 0.977i)5-s + (−0.186 − 0.982i)7-s + (0.160 − 0.987i)8-s + (0.632 + 0.774i)10-s + (−0.291 + 0.956i)11-s + (−0.611 − 0.791i)14-s + (−0.303 − 0.952i)16-s + (−0.354 − 0.935i)17-s + (−0.866 + 0.5i)19-s + (0.914 + 0.404i)20-s + (0.173 + 0.984i)22-s + (0.173 + 0.984i)23-s + (−0.909 + 0.416i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4563 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.865 + 0.501i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4563 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.865 + 0.501i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.485163011 + 0.6677316229i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.485163011 + 0.6677316229i\) |
\(L(1)\) |
\(\approx\) |
\(1.647833235 - 0.1897198532i\) |
\(L(1)\) |
\(\approx\) |
\(1.647833235 - 0.1897198532i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.891 - 0.452i)T \) |
| 5 | \( 1 + (0.213 + 0.977i)T \) |
| 7 | \( 1 + (-0.186 - 0.982i)T \) |
| 11 | \( 1 + (-0.291 + 0.956i)T \) |
| 17 | \( 1 + (-0.354 - 0.935i)T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 + (0.173 + 0.984i)T \) |
| 29 | \( 1 + (0.452 + 0.891i)T \) |
| 31 | \( 1 + (0.579 + 0.815i)T \) |
| 37 | \( 1 + (-0.903 + 0.428i)T \) |
| 41 | \( 1 + (0.0268 - 0.999i)T \) |
| 43 | \( 1 + (0.815 + 0.579i)T \) |
| 47 | \( 1 + (-0.107 - 0.994i)T \) |
| 53 | \( 1 + (0.354 + 0.935i)T \) |
| 59 | \( 1 + (0.952 + 0.303i)T \) |
| 61 | \( 1 + (0.859 + 0.511i)T \) |
| 67 | \( 1 + (0.440 + 0.897i)T \) |
| 71 | \( 1 + (0.663 - 0.748i)T \) |
| 73 | \( 1 + (-0.600 + 0.799i)T \) |
| 79 | \( 1 + (-0.404 + 0.914i)T \) |
| 83 | \( 1 + (-0.852 + 0.523i)T \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 + (0.739 + 0.673i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.92223268671363619021464579727, −17.27596396623930192668429845661, −16.74231810197491151631717707976, −15.94202559723478841706159689290, −15.60806530978154059815095424554, −14.84913118675691221135047796743, −14.12413888428456494074646828777, −13.27297436026576155496848179653, −12.891742651097192756726339569903, −12.352732439014945757622931919369, −11.56454627535489468999482167396, −10.951968193843422848133997148426, −9.959999251203474183810015124956, −8.92815433267574806752872382880, −8.4146704779748294464189075531, −8.09096572929365697573011120921, −6.7999720263346248912702204157, −6.03742397029805879960631292679, −5.79104703711315336624718727763, −4.8184779937764345319891889958, −4.32511169893963962065493251758, −3.39197390828210555879623283269, −2.450999380958234638488017060835, −1.96350585463457798337774540554, −0.498187237484424094804145842536,
1.052685655525703835109111352614, 1.98273867796986588923138669963, 2.67186394282912401979866069211, 3.46259787504243290213339978400, 4.09092873406723980282281576372, 4.88798744644223791968947368687, 5.61252284864996976804737077054, 6.61716562074506519678095418808, 7.04146672778223121507851644727, 7.49127599881120609624935097611, 8.80573892791205302259347322644, 9.93155963502092188688953979707, 10.15513970146675337931805717305, 10.809946127134931323787248801331, 11.4894088851005381311382098132, 12.240734921999707611753930620703, 12.98713078522211865655076874727, 13.62076581840199302111297757407, 14.20031843081207459404954450699, 14.67232346704259747316684105288, 15.576137475484456736825292042198, 15.901525298930359697835961384092, 17.01898240487931684663610648372, 17.665367139614701624534755538471, 18.35490155324622419708549978543