| L(s) = 1 | + (−0.682 + 0.730i)2-s + (−0.0670 − 0.997i)4-s + (0.133 − 0.991i)5-s + (0.511 + 0.859i)7-s + (0.774 + 0.632i)8-s + (0.632 + 0.774i)10-s + (0.891 + 0.452i)11-s + (−0.977 − 0.213i)14-s + (−0.991 + 0.133i)16-s + (0.987 + 0.160i)17-s + (−0.866 + 0.5i)19-s + (−0.997 − 0.0670i)20-s + (−0.939 + 0.342i)22-s + (0.173 − 0.984i)23-s + (−0.964 − 0.265i)25-s + ⋯ |
| L(s) = 1 | + (−0.682 + 0.730i)2-s + (−0.0670 − 0.997i)4-s + (0.133 − 0.991i)5-s + (0.511 + 0.859i)7-s + (0.774 + 0.632i)8-s + (0.632 + 0.774i)10-s + (0.891 + 0.452i)11-s + (−0.977 − 0.213i)14-s + (−0.991 + 0.133i)16-s + (0.987 + 0.160i)17-s + (−0.866 + 0.5i)19-s + (−0.997 − 0.0670i)20-s + (−0.939 + 0.342i)22-s + (0.173 − 0.984i)23-s + (−0.964 − 0.265i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4563 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.958 + 0.285i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4563 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.958 + 0.285i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.08685334449 + 0.5958031426i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.08685334449 + 0.5958031426i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7098284989 + 0.2374475773i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7098284989 + 0.2374475773i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 2 | \( 1 + (-0.682 + 0.730i)T \) |
| 5 | \( 1 + (0.133 - 0.991i)T \) |
| 7 | \( 1 + (0.511 + 0.859i)T \) |
| 11 | \( 1 + (0.891 + 0.452i)T \) |
| 17 | \( 1 + (0.987 + 0.160i)T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 + (0.173 - 0.984i)T \) |
| 29 | \( 1 + (-0.730 - 0.682i)T \) |
| 31 | \( 1 + (-0.702 + 0.711i)T \) |
| 37 | \( 1 + (-0.903 + 0.428i)T \) |
| 41 | \( 1 + (0.989 - 0.147i)T \) |
| 43 | \( 1 + (0.252 + 0.967i)T \) |
| 47 | \( 1 + (-0.997 - 0.0670i)T \) |
| 53 | \( 1 + (0.354 + 0.935i)T \) |
| 59 | \( 1 + (-0.133 + 0.991i)T \) |
| 61 | \( 1 + (-0.982 - 0.186i)T \) |
| 67 | \( 1 + (-0.807 + 0.589i)T \) |
| 71 | \( 1 + (0.316 + 0.948i)T \) |
| 73 | \( 1 + (-0.391 - 0.919i)T \) |
| 79 | \( 1 + (-0.897 + 0.440i)T \) |
| 83 | \( 1 + (-0.989 - 0.147i)T \) |
| 89 | \( 1 + (-0.866 + 0.5i)T \) |
| 97 | \( 1 + (0.133 + 0.991i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.95974274144197309200351292307, −17.3198174260155852237979520083, −16.88562241680011718229795931967, −16.17328913014432177121292564148, −15.13853210248341226842309339972, −14.42684512051436037592752751295, −13.89640351094738216981842661905, −13.1849252727990769111861592737, −12.366266808621226581704829076496, −11.38539088707994229724856868963, −11.19510336482630081214520824921, −10.51526734642834490311758046038, −9.80754052916403918887393953405, −9.17307493486078397481755790690, −8.35909441523708444888544962258, −7.4287331100738996791424068820, −7.20923848405278297665998275574, −6.29089154115503678944708963976, −5.30481528914894118401840969482, −4.148579176802398478501636517795, −3.62858897965319093958112389223, −3.02463527978869162043580449883, −1.91276407329064309379835687312, −1.3990596849498077688465409339, −0.20286091437479733893605496995,
1.29392342316979672449125075619, 1.59900182604475234309812132628, 2.61693739003665843489810264093, 4.09090726714336941159980585034, 4.6219537832556336067815797459, 5.52159870706165954316292320226, 5.9251254705670804775502352395, 6.76072744722903936446308964222, 7.71760668696458716815327314524, 8.28052212529034367197079135272, 8.92089317993585032732552068687, 9.364144346277440168959078580098, 10.13898397820671939252313539420, 10.93501441458280887122830680462, 11.87086422929770772189374518922, 12.3678974361668102305595929823, 13.097738505239398865330523014669, 14.17960707855211831222311231550, 14.62723910710663001731984079084, 15.17230541689660243308385458187, 16.01317817322060275227477871967, 16.67077770390190459809564435536, 17.06087406116287625095275695389, 17.75688086413541222869529164131, 18.40856098651210150165050809778