| L(s) = 1 | + (−0.0670 − 0.997i)2-s + (−0.991 + 0.133i)4-s + (0.252 + 0.967i)5-s + (0.999 − 0.0268i)7-s + (0.200 + 0.979i)8-s + (0.948 − 0.316i)10-s + (0.589 + 0.807i)11-s + (−0.0938 − 0.995i)14-s + (0.964 − 0.265i)16-s + (−0.748 + 0.663i)17-s + (0.5 + 0.866i)19-s + (−0.379 − 0.925i)20-s + (0.766 − 0.642i)22-s + (0.766 − 0.642i)23-s + (−0.872 + 0.488i)25-s + ⋯ |
| L(s) = 1 | + (−0.0670 − 0.997i)2-s + (−0.991 + 0.133i)4-s + (0.252 + 0.967i)5-s + (0.999 − 0.0268i)7-s + (0.200 + 0.979i)8-s + (0.948 − 0.316i)10-s + (0.589 + 0.807i)11-s + (−0.0938 − 0.995i)14-s + (0.964 − 0.265i)16-s + (−0.748 + 0.663i)17-s + (0.5 + 0.866i)19-s + (−0.379 − 0.925i)20-s + (0.766 − 0.642i)22-s + (0.766 − 0.642i)23-s + (−0.872 + 0.488i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4563 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.122 + 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4563 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.122 + 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.062910648 + 0.9400251943i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.062910648 + 0.9400251943i\) |
| \(L(1)\) |
\(\approx\) |
\(1.044326793 - 0.03650792398i\) |
| \(L(1)\) |
\(\approx\) |
\(1.044326793 - 0.03650792398i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 2 | \( 1 + (-0.0670 - 0.997i)T \) |
| 5 | \( 1 + (0.252 + 0.967i)T \) |
| 7 | \( 1 + (0.999 - 0.0268i)T \) |
| 11 | \( 1 + (0.589 + 0.807i)T \) |
| 17 | \( 1 + (-0.748 + 0.663i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.766 - 0.642i)T \) |
| 29 | \( 1 + (0.0670 + 0.997i)T \) |
| 31 | \( 1 + (-0.859 + 0.511i)T \) |
| 37 | \( 1 + (-0.987 - 0.160i)T \) |
| 41 | \( 1 + (-0.226 + 0.974i)T \) |
| 43 | \( 1 + (0.859 + 0.511i)T \) |
| 47 | \( 1 + (-0.611 + 0.791i)T \) |
| 53 | \( 1 + (-0.748 + 0.663i)T \) |
| 59 | \( 1 + (-0.964 - 0.265i)T \) |
| 61 | \( 1 + (-0.147 - 0.989i)T \) |
| 67 | \( 1 + (0.673 + 0.739i)T \) |
| 71 | \( 1 + (-0.120 - 0.992i)T \) |
| 73 | \( 1 + (-0.692 + 0.721i)T \) |
| 79 | \( 1 + (0.379 + 0.925i)T \) |
| 83 | \( 1 + (-0.730 + 0.682i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (0.711 + 0.702i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.81564584078817818910753692021, −17.170147829898931095169013883388, −16.985844642450476132832700296649, −15.90029153790045843329895042419, −15.63510169301018250271223527493, −14.753632138561949758636776739581, −13.96686381362285255701045680744, −13.56217052603502686527078447298, −12.99256568441626023066561187400, −11.907815257092514513616414838776, −11.43202656768640604115419817492, −10.513863328550764669701761555872, −9.43635421009796976411745440464, −8.97970693876399641860748802488, −8.573079863342125687979048016404, −7.67479037067930076183912236910, −7.11605372438587601987151269857, −6.16840350221605811846252798717, −5.42351591567652836070730664158, −4.95882565366845509479741436483, −4.27668601611879778785967743584, −3.44257032714278174077133488186, −2.11084113388283826974543555420, −1.19121856848137607108421514028, −0.40613961942027414048844418798,
1.51365039906593960610294120223, 1.62367982440840659150725808684, 2.67579589610098991405343885287, 3.40084893049588318615029130856, 4.23017304178348517714321876664, 4.85619902524581534929337619859, 5.70669113710465861248095207370, 6.66954691607615718837864506518, 7.4051175939316486922656755542, 8.183716056359878768385352443905, 8.942586299055592744350223516069, 9.65040495928698229396493686148, 10.362207454043726540360365185286, 11.10276260034504349028917785566, 11.22863738660794558791223804832, 12.43367167983038460501234867951, 12.624753961807539024673777546470, 13.81293384707555279488045978433, 14.33655901806428644091714376802, 14.694168876041371549138864834932, 15.44411809101742883009290205822, 16.666126682475250734543725794880, 17.380959655193407314418106610025, 17.864452774609880422731926699227, 18.35088642195014519823313870955