L(s) = 1 | + (−0.872 − 0.488i)2-s + (0.523 + 0.852i)4-s + (0.998 + 0.0536i)5-s + (−0.673 − 0.739i)7-s + (−0.0402 − 0.999i)8-s + (−0.845 − 0.534i)10-s + (0.653 − 0.757i)11-s + (0.226 + 0.974i)14-s + (−0.452 + 0.891i)16-s + (0.885 + 0.464i)17-s + (−0.5 + 0.866i)19-s + (0.476 + 0.879i)20-s + (−0.939 + 0.342i)22-s + (−0.939 + 0.342i)23-s + (0.994 + 0.107i)25-s + ⋯ |
L(s) = 1 | + (−0.872 − 0.488i)2-s + (0.523 + 0.852i)4-s + (0.998 + 0.0536i)5-s + (−0.673 − 0.739i)7-s + (−0.0402 − 0.999i)8-s + (−0.845 − 0.534i)10-s + (0.653 − 0.757i)11-s + (0.226 + 0.974i)14-s + (−0.452 + 0.891i)16-s + (0.885 + 0.464i)17-s + (−0.5 + 0.866i)19-s + (0.476 + 0.879i)20-s + (−0.939 + 0.342i)22-s + (−0.939 + 0.342i)23-s + (0.994 + 0.107i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4563 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0265i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4563 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0265i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.006205865318 - 0.4682165695i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.006205865318 - 0.4682165695i\) |
\(L(1)\) |
\(\approx\) |
\(0.6707686098 - 0.2260074242i\) |
\(L(1)\) |
\(\approx\) |
\(0.6707686098 - 0.2260074242i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.872 - 0.488i)T \) |
| 5 | \( 1 + (0.998 + 0.0536i)T \) |
| 7 | \( 1 + (-0.673 - 0.739i)T \) |
| 11 | \( 1 + (0.653 - 0.757i)T \) |
| 17 | \( 1 + (0.885 + 0.464i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.939 + 0.342i)T \) |
| 29 | \( 1 + (-0.872 - 0.488i)T \) |
| 31 | \( 1 + (-0.589 - 0.807i)T \) |
| 37 | \( 1 + (0.278 + 0.960i)T \) |
| 41 | \( 1 + (-0.711 - 0.702i)T \) |
| 43 | \( 1 + (-0.589 + 0.807i)T \) |
| 47 | \( 1 + (-0.999 - 0.0268i)T \) |
| 53 | \( 1 + (0.885 + 0.464i)T \) |
| 59 | \( 1 + (-0.452 - 0.891i)T \) |
| 61 | \( 1 + (-0.991 + 0.133i)T \) |
| 67 | \( 1 + (-0.783 + 0.621i)T \) |
| 71 | \( 1 + (0.568 - 0.822i)T \) |
| 73 | \( 1 + (0.987 - 0.160i)T \) |
| 79 | \( 1 + (0.476 + 0.879i)T \) |
| 83 | \( 1 + (-0.252 - 0.967i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (-0.545 - 0.837i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.287524739854565501440035045159, −18.02805626480606941528675445583, −17.23246769918978376662006236237, −16.51040455977084621092868528389, −16.20764166630589753187639587913, −15.09762885195855488362054359448, −14.79646969281638122566525353168, −14.01384385384596087217062637254, −13.22647574089897543789070711742, −12.37144194001919798674518702252, −11.836361227599569688569151448039, −10.79435202950627926164920265257, −10.16762720434826072789099047538, −9.440329390881736889467758698345, −9.20055355417551882032440222604, −8.43987696335603053859548806965, −7.44696139620654344808018935480, −6.69591188119798548489203021920, −6.294287240984745331722137329165, −5.411832274966439999417852238927, −4.96730506178256210362782656095, −3.6186423157090450564376966431, −2.56418832700833150455227689149, −2.001729800520597995747955588612, −1.20105892405348436632088031955,
0.16334120788141101887675632032, 1.3744741643545338606031041903, 1.76816754750029113798615308122, 2.90954834207377474045820032807, 3.57907456014166999196331673810, 4.159345215182315785039759374442, 5.607265560947225133526562664875, 6.224188631626623841976440470991, 6.738174933056325600665610237021, 7.771190081656674064222721773546, 8.255983886703101755698460538886, 9.29910684999325118486537917639, 9.67544003687200611930932700144, 10.29773225453440769204061969799, 10.849043936282812564579858404038, 11.71359433306997876154367316935, 12.409958589521008220551675925065, 13.19179198983179470037142753997, 13.64981147271711463110113438540, 14.45664497494120241113618844742, 15.26705794790657009152945952362, 16.43202226629944755631947955344, 16.73143058833554823063872512202, 17.043327212439532839111181096984, 17.95040827514113542968632649931