L(s) = 1 | + (0.452 + 0.891i)2-s + (−0.589 + 0.807i)4-s + (−0.977 + 0.213i)5-s + (0.982 − 0.186i)7-s + (−0.987 − 0.160i)8-s + (−0.632 − 0.774i)10-s + (0.956 + 0.291i)11-s + (0.611 + 0.791i)14-s + (−0.303 − 0.952i)16-s + (−0.354 − 0.935i)17-s + (0.5 + 0.866i)19-s + (0.404 − 0.914i)20-s + (0.173 + 0.984i)22-s + (0.173 + 0.984i)23-s + (0.909 − 0.416i)25-s + ⋯ |
L(s) = 1 | + (0.452 + 0.891i)2-s + (−0.589 + 0.807i)4-s + (−0.977 + 0.213i)5-s + (0.982 − 0.186i)7-s + (−0.987 − 0.160i)8-s + (−0.632 − 0.774i)10-s + (0.956 + 0.291i)11-s + (0.611 + 0.791i)14-s + (−0.303 − 0.952i)16-s + (−0.354 − 0.935i)17-s + (0.5 + 0.866i)19-s + (0.404 − 0.914i)20-s + (0.173 + 0.984i)22-s + (0.173 + 0.984i)23-s + (0.909 − 0.416i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4563 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.865 + 0.501i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4563 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.865 + 0.501i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.744919616 + 0.4688376585i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.744919616 + 0.4688376585i\) |
\(L(1)\) |
\(\approx\) |
\(1.085703542 + 0.5166195930i\) |
\(L(1)\) |
\(\approx\) |
\(1.085703542 + 0.5166195930i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.452 + 0.891i)T \) |
| 5 | \( 1 + (-0.977 + 0.213i)T \) |
| 7 | \( 1 + (0.982 - 0.186i)T \) |
| 11 | \( 1 + (0.956 + 0.291i)T \) |
| 17 | \( 1 + (-0.354 - 0.935i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.173 + 0.984i)T \) |
| 29 | \( 1 + (-0.452 - 0.891i)T \) |
| 31 | \( 1 + (0.815 - 0.579i)T \) |
| 37 | \( 1 + (-0.428 - 0.903i)T \) |
| 41 | \( 1 + (0.999 + 0.0268i)T \) |
| 43 | \( 1 + (-0.815 - 0.579i)T \) |
| 47 | \( 1 + (-0.994 + 0.107i)T \) |
| 53 | \( 1 + (-0.354 - 0.935i)T \) |
| 59 | \( 1 + (0.303 - 0.952i)T \) |
| 61 | \( 1 + (0.859 + 0.511i)T \) |
| 67 | \( 1 + (0.897 - 0.440i)T \) |
| 71 | \( 1 + (0.748 + 0.663i)T \) |
| 73 | \( 1 + (-0.799 - 0.600i)T \) |
| 79 | \( 1 + (-0.404 + 0.914i)T \) |
| 83 | \( 1 + (-0.523 - 0.852i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (0.673 - 0.739i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.36203718806357091209967147793, −17.60228278399814994069913992245, −16.96346727074353842298037952854, −16.009133245988679339000990683535, −15.257162488161307352937430366739, −14.680962047413082090160222948379, −14.23845270347070648804751964519, −13.32842938692031071111024229337, −12.594668995081603257123463166629, −12.00993653442077860021968672637, −11.35791839310075662674001269085, −11.03554322795534851950287644660, −10.22461349885858467601647796247, −9.17751444151058656253207816332, −8.615372555326201113873396686841, −8.15062372138688601874210350446, −6.98997476649162505616670789122, −6.31811715805289116018226161923, −5.2416285070167843593974713366, −4.67315865904017593756436783431, −4.10445233278201789787508843509, −3.33654844512963238867447374155, −2.54813879362759556151895285496, −1.45069463495986789405164911398, −0.967576450972296230893750524690,
0.51387966098326908448645700126, 1.70766259152343952723485066210, 2.86229988177764325871203168593, 3.84373342544555345218258559396, 4.13152348906430986117833096209, 5.00442467282395122887338174979, 5.638255934455268083916699492717, 6.70754436839399605701483167826, 7.177912024340470468443015837011, 7.90726986681743650300258322000, 8.29987277131642098487898875921, 9.262664087887075843213168232618, 9.883449460895769400052374755529, 11.22996935188519022051407604548, 11.58047156390441908279505454453, 12.08824916505707463432947620662, 12.996120291973441727284669811362, 13.841855442993454180752671220144, 14.398451123102149020067528287862, 14.85206594875706267596954795805, 15.624139777305822439741140646837, 16.072597051269406745693830011427, 16.93475864734880330561123486433, 17.472345105237974558181539834088, 18.10466854568888301514862339220