| L(s) = 1 | + (0.673 + 0.739i)2-s + (−0.0938 + 0.995i)4-s + (−0.329 + 0.944i)5-s + (0.956 − 0.291i)7-s + (−0.799 + 0.600i)8-s + (−0.919 + 0.391i)10-s + (−0.611 − 0.791i)11-s + (0.859 + 0.511i)14-s + (−0.982 − 0.186i)16-s + (0.120 + 0.992i)17-s + (0.5 − 0.866i)19-s + (−0.909 − 0.416i)20-s + (0.173 − 0.984i)22-s + (0.173 − 0.984i)23-s + (−0.783 − 0.621i)25-s + ⋯ |
| L(s) = 1 | + (0.673 + 0.739i)2-s + (−0.0938 + 0.995i)4-s + (−0.329 + 0.944i)5-s + (0.956 − 0.291i)7-s + (−0.799 + 0.600i)8-s + (−0.919 + 0.391i)10-s + (−0.611 − 0.791i)11-s + (0.859 + 0.511i)14-s + (−0.982 − 0.186i)16-s + (0.120 + 0.992i)17-s + (0.5 − 0.866i)19-s + (−0.909 − 0.416i)20-s + (0.173 − 0.984i)22-s + (0.173 − 0.984i)23-s + (−0.783 − 0.621i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4563 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.421 + 0.906i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4563 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.421 + 0.906i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.030646570 + 1.295385022i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.030646570 + 1.295385022i\) |
| \(L(1)\) |
\(\approx\) |
\(1.286862606 + 0.7128699671i\) |
| \(L(1)\) |
\(\approx\) |
\(1.286862606 + 0.7128699671i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 2 | \( 1 + (0.673 + 0.739i)T \) |
| 5 | \( 1 + (-0.329 + 0.944i)T \) |
| 7 | \( 1 + (0.956 - 0.291i)T \) |
| 11 | \( 1 + (-0.611 - 0.791i)T \) |
| 17 | \( 1 + (0.120 + 0.992i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (0.173 - 0.984i)T \) |
| 29 | \( 1 + (-0.673 - 0.739i)T \) |
| 31 | \( 1 + (-0.930 - 0.367i)T \) |
| 37 | \( 1 + (0.200 - 0.979i)T \) |
| 41 | \( 1 + (0.589 + 0.807i)T \) |
| 43 | \( 1 + (0.930 - 0.367i)T \) |
| 47 | \( 1 + (0.815 - 0.579i)T \) |
| 53 | \( 1 + (0.120 + 0.992i)T \) |
| 59 | \( 1 + (0.982 - 0.186i)T \) |
| 61 | \( 1 + (0.998 - 0.0536i)T \) |
| 67 | \( 1 + (-0.964 + 0.265i)T \) |
| 71 | \( 1 + (0.970 + 0.239i)T \) |
| 73 | \( 1 + (0.845 + 0.534i)T \) |
| 79 | \( 1 + (0.909 + 0.416i)T \) |
| 83 | \( 1 + (0.404 + 0.914i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (-0.653 + 0.757i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.07623622693376237440256441303, −17.74278301719443188426562075423, −16.63774844784905907547602724688, −15.92985443008164157981783695925, −15.339538100210679620274691540752, −14.650022666522212855112506255962, −13.9968696969476348279333440059, −13.28469880590411384889181406893, −12.530227961611389095985976333117, −12.1421438975142709212015149313, −11.42033233072077965632576240581, −10.896203282251013321933935264234, −9.890853667043880197234452594050, −9.35288030281380828663566492346, −8.64591509197897078648884373652, −7.66254111593726509547022814794, −7.224449772874176327332129192522, −5.79982655909127450861966722740, −5.25808621995329222777556249994, −4.87294462121727248456947837550, −4.0489705769083819127948323446, −3.29907093700564841057482402736, −2.239850820072382642798954158640, −1.627070070747681348687592322891, −0.84076511996611327904246085891,
0.645580532640542980388247845664, 2.247543081652342037024345042928, 2.70427560899605425120169550395, 3.87156011792112163216155383140, 4.073961701642606491628381678555, 5.24074261443130647619436915547, 5.7393778840688984738231858145, 6.5635100384280003416510381426, 7.33132249501410024750360283031, 7.83022059518251770206883592123, 8.41356104568199517689517243220, 9.25248221976942171456090150305, 10.455838730632308669840020635048, 11.09319375805611446719028088173, 11.39986495552437873544784008190, 12.41835178572537885377503800309, 13.09849678479100670275404549857, 13.88752926568993073443857010601, 14.312813391754803891748921458900, 15.04939566140333900746862994836, 15.395541980015904569910696977912, 16.291998230480029878855272365483, 16.88037171356611321870881269757, 17.68144372327298549848786414689, 18.182825392640606480322310798580