L(s) = 1 | + (−0.807 − 0.589i)2-s + (0.303 + 0.952i)4-s + (0.416 + 0.909i)5-s + (0.367 + 0.930i)7-s + (0.316 − 0.948i)8-s + (0.200 − 0.979i)10-s + (0.556 − 0.830i)11-s + (0.252 − 0.967i)14-s + (−0.815 + 0.579i)16-s + (−0.748 + 0.663i)17-s + (0.866 + 0.5i)19-s + (−0.739 + 0.673i)20-s + (−0.939 + 0.342i)22-s + (−0.939 + 0.342i)23-s + (−0.653 + 0.757i)25-s + ⋯ |
L(s) = 1 | + (−0.807 − 0.589i)2-s + (0.303 + 0.952i)4-s + (0.416 + 0.909i)5-s + (0.367 + 0.930i)7-s + (0.316 − 0.948i)8-s + (0.200 − 0.979i)10-s + (0.556 − 0.830i)11-s + (0.252 − 0.967i)14-s + (−0.815 + 0.579i)16-s + (−0.748 + 0.663i)17-s + (0.866 + 0.5i)19-s + (−0.739 + 0.673i)20-s + (−0.939 + 0.342i)22-s + (−0.939 + 0.342i)23-s + (−0.653 + 0.757i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4563 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.993 - 0.109i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4563 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.993 - 0.109i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.009730169666 + 0.1764783894i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.009730169666 + 0.1764783894i\) |
\(L(1)\) |
\(\approx\) |
\(0.6917587033 + 0.04881060615i\) |
\(L(1)\) |
\(\approx\) |
\(0.6917587033 + 0.04881060615i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.807 - 0.589i)T \) |
| 5 | \( 1 + (0.416 + 0.909i)T \) |
| 7 | \( 1 + (0.367 + 0.930i)T \) |
| 11 | \( 1 + (0.556 - 0.830i)T \) |
| 17 | \( 1 + (-0.748 + 0.663i)T \) |
| 19 | \( 1 + (0.866 + 0.5i)T \) |
| 23 | \( 1 + (-0.939 + 0.342i)T \) |
| 29 | \( 1 + (0.589 - 0.807i)T \) |
| 31 | \( 1 + (-0.944 - 0.329i)T \) |
| 37 | \( 1 + (-0.774 - 0.632i)T \) |
| 41 | \( 1 + (-0.0536 + 0.998i)T \) |
| 43 | \( 1 + (-0.329 - 0.944i)T \) |
| 47 | \( 1 + (-0.213 - 0.977i)T \) |
| 53 | \( 1 + (0.748 - 0.663i)T \) |
| 59 | \( 1 + (-0.579 + 0.815i)T \) |
| 61 | \( 1 + (0.476 + 0.879i)T \) |
| 67 | \( 1 + (-0.791 - 0.611i)T \) |
| 71 | \( 1 + (-0.992 + 0.120i)T \) |
| 73 | \( 1 + (-0.960 + 0.278i)T \) |
| 79 | \( 1 + (-0.673 - 0.739i)T \) |
| 83 | \( 1 + (-0.891 - 0.452i)T \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 + (-0.995 + 0.0938i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.855493532205339988326102493408, −17.28976050284408651766924611789, −16.569076159653038990929295039255, −16.06813640118918747534661164132, −15.44731775753130423366789126818, −14.40088632262967166202574242948, −14.04119740548731870488886294888, −13.36121104030592847835918719878, −12.41664556185761357872063708170, −11.68372712381929221563402686934, −10.917151396461548858847596092450, −10.13605997729006566947170206916, −9.59025202166753272006958280451, −8.95522973609828083107513324951, −8.32854547005491392423972581179, −7.4353000073484758063310281636, −6.98389306110266378699995265174, −6.22612662731594057681486115772, −5.20118665747009952874712718606, −4.766353167638777899344683289805, −4.02894864286503333400932413735, −2.65153409349958025032929120326, −1.59496782537386456596637593272, −1.23943815560971045472599282824, −0.05995380601489259869177263194,
1.48206926972671315826376690476, 1.98475673882178401620181811217, 2.80551533097158949774611602423, 3.50319145080808020068360455970, 4.22765338004499299278731348770, 5.639075962391428155992358129411, 6.04058911660762358565956255617, 6.93728317045603971315950019155, 7.65895684772505525983282036976, 8.52719753708747400935036183403, 8.91878592894011730792870099807, 9.8306480080482049880815898424, 10.31758612946526699757694657232, 11.15378033388292729600219244957, 11.68007749572995301359579891731, 12.11235288771180650669638430515, 13.21546110767609341116424792762, 13.7509689507674352082603612897, 14.59985269689743923517107818999, 15.260761315393723845325232176837, 16.012479180914481609583822394612, 16.67590715827326526495531254581, 17.586430807643138962798034710253, 17.955906413044823490651549001691, 18.53877020155235861417139712363