L(s) = 1 | + (−0.682 − 0.730i)2-s + (−0.0670 + 0.997i)4-s + (0.133 + 0.991i)5-s + (0.511 − 0.859i)7-s + (0.774 − 0.632i)8-s + (0.632 − 0.774i)10-s + (0.891 − 0.452i)11-s + (−0.977 + 0.213i)14-s + (−0.991 − 0.133i)16-s + (0.987 − 0.160i)17-s + (−0.866 − 0.5i)19-s + (−0.997 + 0.0670i)20-s + (−0.939 − 0.342i)22-s + (0.173 + 0.984i)23-s + (−0.964 + 0.265i)25-s + ⋯ |
L(s) = 1 | + (−0.682 − 0.730i)2-s + (−0.0670 + 0.997i)4-s + (0.133 + 0.991i)5-s + (0.511 − 0.859i)7-s + (0.774 − 0.632i)8-s + (0.632 − 0.774i)10-s + (0.891 − 0.452i)11-s + (−0.977 + 0.213i)14-s + (−0.991 − 0.133i)16-s + (0.987 − 0.160i)17-s + (−0.866 − 0.5i)19-s + (−0.997 + 0.0670i)20-s + (−0.939 − 0.342i)22-s + (0.173 + 0.984i)23-s + (−0.964 + 0.265i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4563 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.958 - 0.285i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4563 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.958 - 0.285i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.08685334449 - 0.5958031426i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.08685334449 - 0.5958031426i\) |
\(L(1)\) |
\(\approx\) |
\(0.7098284989 - 0.2374475773i\) |
\(L(1)\) |
\(\approx\) |
\(0.7098284989 - 0.2374475773i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.682 - 0.730i)T \) |
| 5 | \( 1 + (0.133 + 0.991i)T \) |
| 7 | \( 1 + (0.511 - 0.859i)T \) |
| 11 | \( 1 + (0.891 - 0.452i)T \) |
| 17 | \( 1 + (0.987 - 0.160i)T \) |
| 19 | \( 1 + (-0.866 - 0.5i)T \) |
| 23 | \( 1 + (0.173 + 0.984i)T \) |
| 29 | \( 1 + (-0.730 + 0.682i)T \) |
| 31 | \( 1 + (-0.702 - 0.711i)T \) |
| 37 | \( 1 + (-0.903 - 0.428i)T \) |
| 41 | \( 1 + (0.989 + 0.147i)T \) |
| 43 | \( 1 + (0.252 - 0.967i)T \) |
| 47 | \( 1 + (-0.997 + 0.0670i)T \) |
| 53 | \( 1 + (0.354 - 0.935i)T \) |
| 59 | \( 1 + (-0.133 - 0.991i)T \) |
| 61 | \( 1 + (-0.982 + 0.186i)T \) |
| 67 | \( 1 + (-0.807 - 0.589i)T \) |
| 71 | \( 1 + (0.316 - 0.948i)T \) |
| 73 | \( 1 + (-0.391 + 0.919i)T \) |
| 79 | \( 1 + (-0.897 - 0.440i)T \) |
| 83 | \( 1 + (-0.989 + 0.147i)T \) |
| 89 | \( 1 + (-0.866 - 0.5i)T \) |
| 97 | \( 1 + (0.133 - 0.991i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.40856098651210150165050809778, −17.75688086413541222869529164131, −17.06087406116287625095275695389, −16.67077770390190459809564435536, −16.01317817322060275227477871967, −15.17230541689660243308385458187, −14.62723910710663001731984079084, −14.17960707855211831222311231550, −13.097738505239398865330523014669, −12.3678974361668102305595929823, −11.87086422929770772189374518922, −10.93501441458280887122830680462, −10.13898397820671939252313539420, −9.364144346277440168959078580098, −8.92089317993585032732552068687, −8.28052212529034367197079135272, −7.71760668696458716815327314524, −6.76072744722903936446308964222, −5.9251254705670804775502352395, −5.52159870706165954316292320226, −4.6219537832556336067815797459, −4.09090726714336941159980585034, −2.61693739003665843489810264093, −1.59900182604475234309812132628, −1.29392342316979672449125075619,
0.20286091437479733893605496995, 1.3990596849498077688465409339, 1.91276407329064309379835687312, 3.02463527978869162043580449883, 3.62858897965319093958112389223, 4.148579176802398478501636517795, 5.30481528914894118401840969482, 6.29089154115503678944708963976, 7.20923848405278297665998275574, 7.4287331100738996791424068820, 8.35909441523708444888544962258, 9.17307493486078397481755790690, 9.80754052916403918887393953405, 10.51526734642834490311758046038, 11.19510336482630081214520824921, 11.38539088707994229724856868963, 12.366266808621226581704829076496, 13.1849252727990769111861592737, 13.89640351094738216981842661905, 14.42684512051436037592752751295, 15.13853210248341226842309339972, 16.17328913014432177121292564148, 16.88562241680011718229795931967, 17.3198174260155852237979520083, 17.95974274144197309200351292307