| L(s) = 1 | + (−0.587 − 0.809i)2-s + (0.987 + 0.156i)3-s + (−0.309 + 0.951i)4-s + (−0.587 − 0.809i)5-s + (−0.453 − 0.891i)6-s + (0.707 + 0.707i)7-s + (0.951 − 0.309i)8-s + (0.951 + 0.309i)9-s + (−0.309 + 0.951i)10-s + (−0.453 + 0.891i)12-s + (−0.987 − 0.156i)13-s + (0.156 − 0.987i)14-s + (−0.453 − 0.891i)15-s + (−0.809 − 0.587i)16-s + (0.707 − 0.707i)17-s + (−0.309 − 0.951i)18-s + ⋯ |
| L(s) = 1 | + (−0.587 − 0.809i)2-s + (0.987 + 0.156i)3-s + (−0.309 + 0.951i)4-s + (−0.587 − 0.809i)5-s + (−0.453 − 0.891i)6-s + (0.707 + 0.707i)7-s + (0.951 − 0.309i)8-s + (0.951 + 0.309i)9-s + (−0.309 + 0.951i)10-s + (−0.453 + 0.891i)12-s + (−0.987 − 0.156i)13-s + (0.156 − 0.987i)14-s + (−0.453 − 0.891i)15-s + (−0.809 − 0.587i)16-s + (0.707 − 0.707i)17-s + (−0.309 − 0.951i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 451 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.528 - 0.848i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 451 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.528 - 0.848i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.179531277 - 0.6547023027i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.179531277 - 0.6547023027i\) |
| \(L(1)\) |
\(\approx\) |
\(1.018300727 - 0.3760081425i\) |
| \(L(1)\) |
\(\approx\) |
\(1.018300727 - 0.3760081425i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 11 | \( 1 \) |
| 41 | \( 1 \) |
| good | 2 | \( 1 + (-0.587 - 0.809i)T \) |
| 3 | \( 1 + (0.987 + 0.156i)T \) |
| 5 | \( 1 + (-0.587 - 0.809i)T \) |
| 7 | \( 1 + (0.707 + 0.707i)T \) |
| 13 | \( 1 + (-0.987 - 0.156i)T \) |
| 17 | \( 1 + (0.707 - 0.707i)T \) |
| 19 | \( 1 + (-0.453 - 0.891i)T \) |
| 23 | \( 1 + (0.809 + 0.587i)T \) |
| 29 | \( 1 + (0.891 - 0.453i)T \) |
| 31 | \( 1 + (0.809 + 0.587i)T \) |
| 37 | \( 1 + (0.309 - 0.951i)T \) |
| 43 | \( 1 + (0.587 - 0.809i)T \) |
| 47 | \( 1 + (-0.707 + 0.707i)T \) |
| 53 | \( 1 + (0.707 + 0.707i)T \) |
| 59 | \( 1 + (0.309 + 0.951i)T \) |
| 61 | \( 1 + (0.587 - 0.809i)T \) |
| 67 | \( 1 + (-0.891 - 0.453i)T \) |
| 71 | \( 1 + (-0.707 - 0.707i)T \) |
| 73 | \( 1 + (0.587 - 0.809i)T \) |
| 79 | \( 1 + (-0.891 + 0.453i)T \) |
| 83 | \( 1 + (-0.309 - 0.951i)T \) |
| 89 | \( 1 + (0.987 + 0.156i)T \) |
| 97 | \( 1 + (0.707 - 0.707i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.227299551197409892611167443880, −23.54315711900410114371962175682, −22.75251610784747880451796343093, −21.458022174180415116578686398075, −20.45749209295420344857058343415, −19.48463386713863571255407362181, −19.066742320629500486097487651439, −18.19409200833958109154440653544, −17.230288526775810239180850117239, −16.34412434438372336445599725571, −15.15935868733916522943867555761, −14.59449000240561247271422628399, −14.23793284153103685098708956835, −13.00130302693100929756795467021, −11.66502049628040984650271818692, −10.34870386594294640665631817443, −10.01300671908962577417047296890, −8.50800478299416426488871311765, −7.96763222492385223056682543057, −7.21610481132858141950085672816, −6.44015565038976563936987004748, −4.78895372834678414543674576993, −3.8992349898770444730010791312, −2.519782926900288095344652341, −1.21595067856673900456290629439,
1.04386508048470418534521561395, 2.30037115523701458566017918236, 3.10744183059619717904998518865, 4.43436977973458726166410884658, 5.029603964660056999268783372112, 7.314183581769516873960677364237, 7.913760251810141710878744527928, 8.864083910913874226688999536753, 9.30001649122132496716389013391, 10.42865847488305359026654108639, 11.62765650092598842370559297532, 12.28159740316235757527133061491, 13.13420767424933350111960419107, 14.180608685451632800307237067239, 15.2533461004311998804382745, 16.00282616692218414983986912339, 17.122869029656168128630680273433, 17.957564721277205524503021615884, 19.14656445507540218730448926516, 19.47452570338485443505210710311, 20.37090507750674613795700614464, 21.20306396018005154348746942338, 21.54424390537011023259251940117, 22.85103975217245383984773363548, 24.098896260148511476357757783435