| L(s) = 1 | + (0.309 + 0.951i)2-s + (0.309 − 0.951i)3-s + (−0.809 + 0.587i)4-s + (−0.809 − 0.587i)5-s + 6-s + (−0.809 − 0.587i)7-s + (−0.809 − 0.587i)8-s + (−0.809 − 0.587i)9-s + (0.309 − 0.951i)10-s + (0.309 + 0.951i)12-s + (0.309 + 0.951i)13-s + (0.309 − 0.951i)14-s + (−0.809 + 0.587i)15-s + (0.309 − 0.951i)16-s + (0.309 + 0.951i)17-s + (0.309 − 0.951i)18-s + ⋯ |
| L(s) = 1 | + (0.309 + 0.951i)2-s + (0.309 − 0.951i)3-s + (−0.809 + 0.587i)4-s + (−0.809 − 0.587i)5-s + 6-s + (−0.809 − 0.587i)7-s + (−0.809 − 0.587i)8-s + (−0.809 − 0.587i)9-s + (0.309 − 0.951i)10-s + (0.309 + 0.951i)12-s + (0.309 + 0.951i)13-s + (0.309 − 0.951i)14-s + (−0.809 + 0.587i)15-s + (0.309 − 0.951i)16-s + (0.309 + 0.951i)17-s + (0.309 − 0.951i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 451 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.933 + 0.358i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 451 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.933 + 0.358i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.05193247903 + 0.2798388109i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.05193247903 + 0.2798388109i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7263100565 + 0.1463602673i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7263100565 + 0.1463602673i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 11 | \( 1 \) |
| 41 | \( 1 \) |
| good | 2 | \( 1 + (0.309 + 0.951i)T \) |
| 3 | \( 1 + (0.309 - 0.951i)T \) |
| 5 | \( 1 + (-0.809 - 0.587i)T \) |
| 7 | \( 1 + (-0.809 - 0.587i)T \) |
| 13 | \( 1 + (0.309 + 0.951i)T \) |
| 17 | \( 1 + (0.309 + 0.951i)T \) |
| 19 | \( 1 + (0.309 + 0.951i)T \) |
| 23 | \( 1 + (-0.809 - 0.587i)T \) |
| 29 | \( 1 + (-0.809 + 0.587i)T \) |
| 31 | \( 1 + (-0.809 + 0.587i)T \) |
| 37 | \( 1 + (-0.809 + 0.587i)T \) |
| 43 | \( 1 + (-0.809 - 0.587i)T \) |
| 47 | \( 1 + (-0.809 + 0.587i)T \) |
| 53 | \( 1 + (0.309 - 0.951i)T \) |
| 59 | \( 1 + (0.309 - 0.951i)T \) |
| 61 | \( 1 + (0.309 - 0.951i)T \) |
| 67 | \( 1 + (0.309 + 0.951i)T \) |
| 71 | \( 1 + (0.309 + 0.951i)T \) |
| 73 | \( 1 + (0.309 + 0.951i)T \) |
| 79 | \( 1 + (-0.809 - 0.587i)T \) |
| 83 | \( 1 + (-0.809 + 0.587i)T \) |
| 89 | \( 1 + (-0.809 + 0.587i)T \) |
| 97 | \( 1 + (0.309 - 0.951i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.01004411407068641579960630244, −22.615986049906441796397729392306, −21.981839912139847974495183288240, −21.08331483146877425411241748800, −19.99640590580058347238334795135, −19.7401641118533636620554507159, −18.66810367097477573920445006130, −17.93530383019152087712474537357, −16.41234318513634399069284831190, −15.46648526942708445748085015174, −15.080505714086790664631464624358, −13.945569070830351147190377260782, −13.08105909064029401182164014468, −11.88135083778598384593311203549, −11.28226568211862685619295785690, −10.31540890570750887921191219696, −9.57057787580466596034500194789, −8.72840933683830972892576766503, −7.560046070490454414520203910009, −5.94426227296759294679270792512, −5.06996502426812662031558749570, −3.82527716100678177945670999552, −3.22243733618289167239967874027, −2.43516245539370511328799740705, −0.13966901017842494401283189918,
1.49380092710291309476865913187, 3.47185721918840001612959722654, 3.93230866777076199377188285811, 5.41670188911250368446625078614, 6.50290936271203104786450291648, 7.14600606003642151089428235577, 8.128144108332692169495699886771, 8.71296847933054546140645758525, 9.85827098427569718182935629131, 11.52296157102125450918255535456, 12.5539764340373694778416014519, 12.89004277107544395169934119757, 14.00819739181236263394206598637, 14.61450662212933358260913800047, 15.85527009580106748324006202165, 16.54984697771018299790500501356, 17.17246174861501718617871063231, 18.48444184397646429422897925970, 19.029787270302778554171695897057, 19.98497373752404557671329123748, 20.83052442987873234776523996001, 22.17244228152442947911021746018, 23.07853979328589943755570322330, 23.7040100593127881812497171105, 24.14630013288635475347683507580