| L(s) = 1 | + (−0.980 − 0.195i)2-s + (0.0980 + 0.995i)3-s + (0.923 + 0.382i)4-s − 5-s + (0.0980 − 0.995i)6-s + (−0.382 + 0.923i)7-s + (−0.831 − 0.555i)8-s + (−0.980 + 0.195i)9-s + (0.980 + 0.195i)10-s + (0.707 − 0.707i)11-s + (−0.290 + 0.956i)12-s + (0.956 − 0.290i)13-s + (0.555 − 0.831i)14-s + (−0.0980 − 0.995i)15-s + (0.707 + 0.707i)16-s + (−0.471 + 0.881i)17-s + ⋯ |
| L(s) = 1 | + (−0.980 − 0.195i)2-s + (0.0980 + 0.995i)3-s + (0.923 + 0.382i)4-s − 5-s + (0.0980 − 0.995i)6-s + (−0.382 + 0.923i)7-s + (−0.831 − 0.555i)8-s + (−0.980 + 0.195i)9-s + (0.980 + 0.195i)10-s + (0.707 − 0.707i)11-s + (−0.290 + 0.956i)12-s + (0.956 − 0.290i)13-s + (0.555 − 0.831i)14-s + (−0.0980 − 0.995i)15-s + (0.707 + 0.707i)16-s + (−0.471 + 0.881i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 449 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.914 - 0.403i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 449 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.914 - 0.403i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4485871351 - 0.09456747713i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4485871351 - 0.09456747713i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5002226818 + 0.1535841612i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5002226818 + 0.1535841612i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 449 | \( 1 \) |
| good | 2 | \( 1 + (-0.980 - 0.195i)T \) |
| 3 | \( 1 + (0.0980 + 0.995i)T \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 + (-0.382 + 0.923i)T \) |
| 11 | \( 1 + (0.707 - 0.707i)T \) |
| 13 | \( 1 + (0.956 - 0.290i)T \) |
| 17 | \( 1 + (-0.471 + 0.881i)T \) |
| 19 | \( 1 + (-0.995 + 0.0980i)T \) |
| 23 | \( 1 + (-0.382 + 0.923i)T \) |
| 29 | \( 1 + (-0.773 - 0.634i)T \) |
| 31 | \( 1 + (-0.773 + 0.634i)T \) |
| 37 | \( 1 + (-0.290 - 0.956i)T \) |
| 41 | \( 1 + (-0.555 - 0.831i)T \) |
| 43 | \( 1 + (0.956 - 0.290i)T \) |
| 47 | \( 1 + (-0.995 - 0.0980i)T \) |
| 53 | \( 1 + (0.831 - 0.555i)T \) |
| 59 | \( 1 + (-0.195 - 0.980i)T \) |
| 61 | \( 1 + (-0.831 - 0.555i)T \) |
| 67 | \( 1 + iT \) |
| 71 | \( 1 + (0.956 + 0.290i)T \) |
| 73 | \( 1 + (-0.773 - 0.634i)T \) |
| 79 | \( 1 + (0.0980 + 0.995i)T \) |
| 83 | \( 1 + (0.634 - 0.773i)T \) |
| 89 | \( 1 + (0.923 + 0.382i)T \) |
| 97 | \( 1 + (0.980 + 0.195i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.985359820787836879051947132770, −23.22427726185297810752762671511, −22.58413163437190305504937687968, −20.62193493375398181046953494043, −20.12377959398897133521320279516, −19.518921346318889170921122516079, −18.63891161438914154296162223060, −18.030018865511117614901154665466, −16.8533253211026448480396468734, −16.43591395160739853263132679537, −15.20668683889118529373586574529, −14.4069052760068559077912468972, −13.2361005791634985768546736561, −12.23879615996938269192970615287, −11.37774512483564619429585209760, −10.680018893894602826808423232488, −9.29009476197774006454728711293, −8.501188582518239169429791663379, −7.55086783986747287432613306900, −6.890025079766096954368305778340, −6.26265349523678981770797660231, −4.39423331853482850148536155930, −3.17808154475961015585823062886, −1.80196226671940491321069248113, −0.72946091536649757569849308385,
0.24540709808041135469617273466, 2.02295076527313231519868621707, 3.49223355330512530874044349730, 3.80255429802799550099420291727, 5.63783076984380763132349796833, 6.48166082917006704012066812754, 7.9818144237864475984826802594, 8.73334364603057989121524686069, 9.170085862587853719366521924370, 10.511607106313221832683754586668, 11.15280449991043252179559905169, 11.86836400343683458201740318367, 12.93123055688662221238856543534, 14.600991550461762346511035190321, 15.44056963550051781086146205061, 15.89037465990381701418420759781, 16.68719380437955052803646737814, 17.634380054472271155482522498111, 18.859480581694770047480205455902, 19.40659848502749614507752371303, 20.09238598729491699539073756163, 21.163719418188033119078184471825, 21.77021824301895719874749544043, 22.68442240385984742119446722601, 23.81581461081625094766172063856