| L(s) = 1 | + (−0.111 − 0.993i)2-s + (−0.998 + 0.0560i)3-s + (−0.974 + 0.222i)4-s + (0.623 + 0.781i)5-s + (0.167 + 0.985i)6-s + (−0.781 − 0.623i)7-s + (0.330 + 0.943i)8-s + (0.993 − 0.111i)9-s + (0.707 − 0.707i)10-s + (−0.623 − 0.781i)11-s + (0.960 − 0.276i)12-s + (−0.985 + 0.167i)13-s + (−0.532 + 0.846i)14-s + (−0.666 − 0.745i)15-s + (0.900 − 0.433i)16-s + (−0.815 + 0.578i)17-s + ⋯ |
| L(s) = 1 | + (−0.111 − 0.993i)2-s + (−0.998 + 0.0560i)3-s + (−0.974 + 0.222i)4-s + (0.623 + 0.781i)5-s + (0.167 + 0.985i)6-s + (−0.781 − 0.623i)7-s + (0.330 + 0.943i)8-s + (0.993 − 0.111i)9-s + (0.707 − 0.707i)10-s + (−0.623 − 0.781i)11-s + (0.960 − 0.276i)12-s + (−0.985 + 0.167i)13-s + (−0.532 + 0.846i)14-s + (−0.666 − 0.745i)15-s + (0.900 − 0.433i)16-s + (−0.815 + 0.578i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 449 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.956 - 0.291i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 449 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.956 - 0.291i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6431290223 - 0.09583249641i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6431290223 - 0.09583249641i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6191273179 - 0.1970225344i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6191273179 - 0.1970225344i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 449 | \( 1 \) |
| good | 2 | \( 1 + (-0.111 - 0.993i)T \) |
| 3 | \( 1 + (-0.998 + 0.0560i)T \) |
| 5 | \( 1 + (0.623 + 0.781i)T \) |
| 7 | \( 1 + (-0.781 - 0.623i)T \) |
| 11 | \( 1 + (-0.623 - 0.781i)T \) |
| 13 | \( 1 + (-0.985 + 0.167i)T \) |
| 17 | \( 1 + (-0.815 + 0.578i)T \) |
| 19 | \( 1 + (0.875 - 0.483i)T \) |
| 23 | \( 1 + (0.974 + 0.222i)T \) |
| 29 | \( 1 + (-0.276 - 0.960i)T \) |
| 31 | \( 1 + (-0.276 + 0.960i)T \) |
| 37 | \( 1 + (0.382 + 0.923i)T \) |
| 41 | \( 1 + (0.846 + 0.532i)T \) |
| 43 | \( 1 + (0.960 + 0.276i)T \) |
| 47 | \( 1 + (0.167 + 0.985i)T \) |
| 53 | \( 1 + (0.846 + 0.532i)T \) |
| 59 | \( 1 + (0.532 - 0.846i)T \) |
| 61 | \( 1 + (0.111 - 0.993i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (0.382 - 0.923i)T \) |
| 73 | \( 1 + (-0.875 + 0.483i)T \) |
| 79 | \( 1 + (0.923 + 0.382i)T \) |
| 83 | \( 1 + (0.998 - 0.0560i)T \) |
| 89 | \( 1 + (-0.433 + 0.900i)T \) |
| 97 | \( 1 + (-0.330 + 0.943i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.32316053278043527195732389134, −23.1623727795795304571515233589, −22.46618690467315615725144579063, −21.91874942628517966374088208791, −20.79287232983157386999374745043, −19.55722581370868466179035087756, −18.37499358012309196209776280244, −17.90299341593427196615611800922, −17.02838627284942633609026653632, −16.30055327259325276404687358040, −15.68425322578192639502131793903, −14.6997977381668394674586435351, −13.28012800954167005361538692961, −12.81151589739540715279453015711, −12.03925710886663196194308036761, −10.435412379082890634699678790817, −9.59775504284893712946122063785, −9.032860265525312701530256883637, −7.49928617745247065750042116425, −6.8380451978332084587830843002, −5.55638320911084162155690686940, −5.32535549120348283196969406042, −4.25586590314982636746469726814, −2.2860985301627268429471923521, −0.59573481559068490220409909079,
0.90749632206050417292244819554, 2.43071916455046386611621980017, 3.373144017695374616713257315579, 4.61074075045477469937272915994, 5.62072263561081811305573455991, 6.65789009693083047142285465227, 7.63056244138781253697772384330, 9.35112051138081125801341737475, 9.91448672987136570125612880928, 10.874875844948508107407785468155, 11.2162655503078281235370845826, 12.53979974552771695931736651262, 13.248591216223104339444685169197, 13.96970012354869375744973752944, 15.30379864340203641184332957616, 16.49049925341707517124625649498, 17.341999774923271812320335003438, 17.88650704238482004638431443609, 18.93963869833903921407339170290, 19.426246733159778139363731156674, 20.69168687851989536148866066089, 21.70588444024079067046314954325, 22.05394726607195080892346524452, 22.84211498374283125288148510886, 23.59188295853804796315842945324