| L(s) = 1 | + (0.726 + 0.686i)2-s + (0.567 + 0.823i)3-s + (0.0560 + 0.998i)4-s + (0.222 − 0.974i)5-s + (−0.153 + 0.988i)6-s + (0.167 − 0.985i)7-s + (−0.645 + 0.764i)8-s + (−0.356 + 0.934i)9-s + (0.831 − 0.555i)10-s + (−0.532 − 0.846i)11-s + (−0.790 + 0.612i)12-s + (−0.236 − 0.971i)13-s + (0.799 − 0.601i)14-s + (0.929 − 0.369i)15-s + (−0.993 + 0.111i)16-s + (−0.939 + 0.343i)17-s + ⋯ |
| L(s) = 1 | + (0.726 + 0.686i)2-s + (0.567 + 0.823i)3-s + (0.0560 + 0.998i)4-s + (0.222 − 0.974i)5-s + (−0.153 + 0.988i)6-s + (0.167 − 0.985i)7-s + (−0.645 + 0.764i)8-s + (−0.356 + 0.934i)9-s + (0.831 − 0.555i)10-s + (−0.532 − 0.846i)11-s + (−0.790 + 0.612i)12-s + (−0.236 − 0.971i)13-s + (0.799 − 0.601i)14-s + (0.929 − 0.369i)15-s + (−0.993 + 0.111i)16-s + (−0.939 + 0.343i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 449 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.166 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 449 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.166 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8529457103 - 0.7211975745i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8529457103 - 0.7211975745i\) |
| \(L(1)\) |
\(\approx\) |
\(1.320609914 + 0.4384150516i\) |
| \(L(1)\) |
\(\approx\) |
\(1.320609914 + 0.4384150516i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 449 | \( 1 \) |
| good | 2 | \( 1 + (0.726 + 0.686i)T \) |
| 3 | \( 1 + (0.567 + 0.823i)T \) |
| 5 | \( 1 + (0.222 - 0.974i)T \) |
| 7 | \( 1 + (0.167 - 0.985i)T \) |
| 11 | \( 1 + (-0.532 - 0.846i)T \) |
| 13 | \( 1 + (-0.236 - 0.971i)T \) |
| 17 | \( 1 + (-0.939 + 0.343i)T \) |
| 19 | \( 1 + (-0.0700 + 0.997i)T \) |
| 23 | \( 1 + (-0.666 - 0.745i)T \) |
| 29 | \( 1 + (-0.964 + 0.263i)T \) |
| 31 | \( 1 + (-0.964 - 0.263i)T \) |
| 37 | \( 1 + (0.773 - 0.634i)T \) |
| 41 | \( 1 + (-0.968 + 0.249i)T \) |
| 43 | \( 1 + (0.612 - 0.790i)T \) |
| 47 | \( 1 + (0.988 + 0.153i)T \) |
| 53 | \( 1 + (-0.249 - 0.968i)T \) |
| 59 | \( 1 + (-0.139 + 0.990i)T \) |
| 61 | \( 1 + (-0.999 - 0.0280i)T \) |
| 67 | \( 1 + iT \) |
| 71 | \( 1 + (0.634 - 0.773i)T \) |
| 73 | \( 1 + (0.754 - 0.655i)T \) |
| 79 | \( 1 + (-0.290 + 0.956i)T \) |
| 83 | \( 1 + (-0.181 + 0.983i)T \) |
| 89 | \( 1 + (0.960 - 0.276i)T \) |
| 97 | \( 1 + (0.0840 - 0.996i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.89830687325840891897783667478, −23.14829600290019770892075147414, −22.024089126800491320828774390214, −21.66149125221105009595501744914, −20.47578969998664585725339126370, −19.752589340224874075233474364367, −18.78646615832056086543254566170, −18.35475150139745002720012468789, −17.5757938489468071385736187830, −15.514161568233111949411533824995, −15.12011600798066531525506369914, −14.204787001821779988810047086563, −13.485084642670743369421708284, −12.62521409672085173676444631815, −11.69293729133942095839740758643, −11.074722201999448101716049275032, −9.63326183953623480473147990337, −9.095182476196409434261841308894, −7.50190285904809327471744855928, −6.69775396524747402505128617755, −5.80818721002185225136337428300, −4.56066393041895175319290595752, −3.23159474506319022557339131633, −2.24415269235009812591827127068, −1.92455430986988469009760217086,
0.17952790924325413474964753147, 2.18375171451334871738937747642, 3.570350472884369712838592795991, 4.21274585799350604928000170604, 5.20743093189362669664832004263, 5.95103853738016757243471806755, 7.59574495980324059833105382703, 8.19912750366955724951958621486, 9.0235969189657899975946473141, 10.282982342167133964934335310530, 11.11349794582153898151830407347, 12.5917758274905134488082548669, 13.29930032158697412550263242593, 13.98622609983768866229023127944, 14.88241373990931524858651012700, 15.80773503049869812912315438301, 16.58020897720663394462816082684, 16.99472256603097820163776428546, 18.18444877254853491139589442527, 19.84880292605999080729039060, 20.426076955443730304300012928572, 20.992863264054937753527377264074, 21.934743073545344550790065805869, 22.64944109266219688356285649855, 23.83711417199660003670977096170