| L(s) = 1 | + (−0.303 + 0.952i)2-s + (−0.999 + 0.0420i)3-s + (−0.815 − 0.578i)4-s + (−0.623 + 0.781i)5-s + (0.263 − 0.964i)6-s + (−0.276 − 0.960i)7-s + (0.799 − 0.601i)8-s + (0.996 − 0.0840i)9-s + (−0.555 − 0.831i)10-s + (0.111 + 0.993i)11-s + (0.839 + 0.543i)12-s + (−0.125 − 0.992i)13-s + (0.999 + 0.0280i)14-s + (0.590 − 0.807i)15-s + (0.330 + 0.943i)16-s + (0.446 + 0.894i)17-s + ⋯ |
| L(s) = 1 | + (−0.303 + 0.952i)2-s + (−0.999 + 0.0420i)3-s + (−0.815 − 0.578i)4-s + (−0.623 + 0.781i)5-s + (0.263 − 0.964i)6-s + (−0.276 − 0.960i)7-s + (0.799 − 0.601i)8-s + (0.996 − 0.0840i)9-s + (−0.555 − 0.831i)10-s + (0.111 + 0.993i)11-s + (0.839 + 0.543i)12-s + (−0.125 − 0.992i)13-s + (0.999 + 0.0280i)14-s + (0.590 − 0.807i)15-s + (0.330 + 0.943i)16-s + (0.446 + 0.894i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 449 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.613 - 0.789i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 449 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.613 - 0.789i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1133222123 - 0.05547333290i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.1133222123 - 0.05547333290i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4109315838 + 0.2456012452i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4109315838 + 0.2456012452i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 449 | \( 1 \) |
| good | 2 | \( 1 + (-0.303 + 0.952i)T \) |
| 3 | \( 1 + (-0.999 + 0.0420i)T \) |
| 5 | \( 1 + (-0.623 + 0.781i)T \) |
| 7 | \( 1 + (-0.276 - 0.960i)T \) |
| 11 | \( 1 + (0.111 + 0.993i)T \) |
| 13 | \( 1 + (-0.125 - 0.992i)T \) |
| 17 | \( 1 + (0.446 + 0.894i)T \) |
| 19 | \( 1 + (-0.395 + 0.918i)T \) |
| 23 | \( 1 + (-0.167 + 0.985i)T \) |
| 29 | \( 1 + (-0.567 - 0.823i)T \) |
| 31 | \( 1 + (-0.567 + 0.823i)T \) |
| 37 | \( 1 + (0.0980 - 0.995i)T \) |
| 41 | \( 1 + (0.912 + 0.408i)T \) |
| 43 | \( 1 + (0.543 + 0.839i)T \) |
| 47 | \( 1 + (-0.964 - 0.263i)T \) |
| 53 | \( 1 + (-0.408 + 0.912i)T \) |
| 59 | \( 1 + (-0.726 + 0.686i)T \) |
| 61 | \( 1 + (-0.458 + 0.888i)T \) |
| 67 | \( 1 + iT \) |
| 71 | \( 1 + (0.995 - 0.0980i)T \) |
| 73 | \( 1 + (0.929 - 0.369i)T \) |
| 79 | \( 1 + (0.881 - 0.471i)T \) |
| 83 | \( 1 + (-0.736 - 0.676i)T \) |
| 89 | \( 1 + (-0.0560 - 0.998i)T \) |
| 97 | \( 1 + (0.139 + 0.990i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.95911745071245868976008328696, −22.800461595440310236405320172872, −22.093417418115401252580523386702, −21.4064689517613797879821415000, −20.60217953289835431127273718672, −19.403757607755797942510346982209, −18.80174337527903463292312094172, −18.177653033545514165156786423953, −16.81191336813230109060899957349, −16.5287363494560047893484363435, −15.54134686446967845506928949076, −14.028664239356663969991364735005, −12.852071939445269155036504560848, −12.34891463375639310471223195723, −11.43229618744614598318158300897, −11.09180360481108792159931620005, −9.551160896024901829399210531141, −9.00570131464475023424383510457, −7.95981931697975631353036990909, −6.6393602798952828144013614056, −5.34163525617295344985154253143, −4.62916525987667955947947062780, −3.50070203936818233458097432961, −2.10906448906599833391059527480, −0.770045461430628805888676465040,
0.06679710819454874596191010071, 1.404905463081717224880202509300, 3.68784224188327204713217711197, 4.379915623867141125885891421722, 5.68300607083145006174429839791, 6.44361560914174631888172317295, 7.53950466536491188821909984982, 7.727011440830832893729896949206, 9.63377965331080473397396693679, 10.33640035519918349619289319424, 10.92871902798259136878653805068, 12.34805232465381700108557932513, 13.08493038756512530496431831273, 14.42513019055344988373277924156, 15.113806312020954365795494932517, 15.93606376262014435853425944989, 16.78832251971086320932202680723, 17.576628604836568288243170739887, 18.1213374862246869548738235925, 19.23446083203178594652391134216, 19.8822616530295327555091470071, 21.37566254233803573335198661601, 22.537974143672391468998534643380, 23.083955664321729708699763169508, 23.3141865824389940873666028110