| L(s) = 1 | + (0.989 + 0.142i)2-s + (−0.479 + 0.877i)3-s + (0.959 + 0.281i)4-s + (−0.599 + 0.800i)6-s + (0.349 + 0.936i)7-s + (0.909 + 0.415i)8-s + (−0.540 − 0.841i)9-s + (−0.415 − 0.909i)11-s + (−0.707 + 0.707i)12-s + (0.877 + 0.479i)13-s + (0.212 + 0.977i)14-s + (0.841 + 0.540i)16-s + (0.142 + 0.989i)17-s + (−0.415 − 0.909i)18-s + (−0.212 + 0.977i)19-s + ⋯ |
| L(s) = 1 | + (0.989 + 0.142i)2-s + (−0.479 + 0.877i)3-s + (0.959 + 0.281i)4-s + (−0.599 + 0.800i)6-s + (0.349 + 0.936i)7-s + (0.909 + 0.415i)8-s + (−0.540 − 0.841i)9-s + (−0.415 − 0.909i)11-s + (−0.707 + 0.707i)12-s + (0.877 + 0.479i)13-s + (0.212 + 0.977i)14-s + (0.841 + 0.540i)16-s + (0.142 + 0.989i)17-s + (−0.415 − 0.909i)18-s + (−0.212 + 0.977i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 445 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.138 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 445 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.138 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.442946480 + 1.659561927i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.442946480 + 1.659561927i\) |
| \(L(1)\) |
\(\approx\) |
\(1.491738324 + 0.8276949096i\) |
| \(L(1)\) |
\(\approx\) |
\(1.491738324 + 0.8276949096i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 89 | \( 1 \) |
| good | 2 | \( 1 + (0.989 + 0.142i)T \) |
| 3 | \( 1 + (-0.479 + 0.877i)T \) |
| 7 | \( 1 + (0.349 + 0.936i)T \) |
| 11 | \( 1 + (-0.415 - 0.909i)T \) |
| 13 | \( 1 + (0.877 + 0.479i)T \) |
| 17 | \( 1 + (0.142 + 0.989i)T \) |
| 19 | \( 1 + (-0.212 + 0.977i)T \) |
| 23 | \( 1 + (0.212 - 0.977i)T \) |
| 29 | \( 1 + (0.349 + 0.936i)T \) |
| 31 | \( 1 + (-0.977 + 0.212i)T \) |
| 37 | \( 1 + (-0.707 - 0.707i)T \) |
| 41 | \( 1 + (-0.479 - 0.877i)T \) |
| 43 | \( 1 + (-0.936 - 0.349i)T \) |
| 47 | \( 1 + (0.959 + 0.281i)T \) |
| 53 | \( 1 + (-0.959 + 0.281i)T \) |
| 59 | \( 1 + (0.877 - 0.479i)T \) |
| 61 | \( 1 + (-0.997 + 0.0713i)T \) |
| 67 | \( 1 + (0.281 + 0.959i)T \) |
| 71 | \( 1 + (0.909 - 0.415i)T \) |
| 73 | \( 1 + (0.540 - 0.841i)T \) |
| 79 | \( 1 + (0.540 - 0.841i)T \) |
| 83 | \( 1 + (0.800 + 0.599i)T \) |
| 97 | \( 1 + (-0.909 - 0.415i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.48313145095747083661226656280, −23.20012247503010845320464567227, −22.395797462630310040664305822948, −21.2508225114156003889014883533, −20.3167941801548961277909706492, −19.83677464000522879995209484946, −18.625586162098644098754073279766, −17.718590881958430718466779429297, −16.91660307025040668399177468321, −15.857135079934343290312642785136, −14.98079291952184819556809059013, −13.62216213858425016066639159887, −13.51148000011742052156546437159, −12.48877338671964136181164556532, −11.46921672644585150790521025574, −10.93089198912233623358049409663, −9.8614004795860351395865742492, −8.03944914624121159380121089025, −7.25783741661177957633837709816, −6.57560725898834452912654832112, −5.3470897770781281216418889083, −4.66052779109355556186649852452, −3.32437569880437824708262451950, −2.105469787339060647666983483011, −1.01242607697533125376702912420,
1.79309142009750819552129726565, 3.21603816051909879434547344468, 3.95817637782476536432792314737, 5.15900899437282354837134802772, 5.79301641868507178937548913749, 6.55401420357235632946892850063, 8.23460279130487731703430676924, 8.89891967333559626537274807383, 10.58340417199136724195739895251, 10.92555616766295527150656524749, 12.0413744922572270325844825835, 12.66406930735157954403243754513, 14.0222522488680502317009937661, 14.697458977627720032216586699942, 15.56949367460722176061953665896, 16.26025978819979604612992180751, 16.92358149317475037932744788927, 18.21469360966860801922759987097, 19.13725341857959632850617939984, 20.5494184444097907599510295117, 21.08109870006863887717618635062, 21.77671954240469271901378386230, 22.33671589249792005586210858740, 23.505527324371846764999637517269, 23.874179590780307720169826774455