L(s) = 1 | + (0.342 − 0.939i)5-s + (−0.173 + 0.984i)7-s + (−0.342 − 0.939i)11-s + (0.642 + 0.766i)13-s + (0.5 + 0.866i)17-s + (−0.866 − 0.5i)19-s + (0.173 + 0.984i)23-s + (−0.766 − 0.642i)25-s + (0.642 − 0.766i)29-s + (0.173 + 0.984i)31-s + (0.866 + 0.5i)35-s + (−0.866 + 0.5i)37-s + (0.766 − 0.642i)41-s + (0.342 + 0.939i)43-s + (−0.173 + 0.984i)47-s + ⋯ |
L(s) = 1 | + (0.342 − 0.939i)5-s + (−0.173 + 0.984i)7-s + (−0.342 − 0.939i)11-s + (0.642 + 0.766i)13-s + (0.5 + 0.866i)17-s + (−0.866 − 0.5i)19-s + (0.173 + 0.984i)23-s + (−0.766 − 0.642i)25-s + (0.642 − 0.766i)29-s + (0.173 + 0.984i)31-s + (0.866 + 0.5i)35-s + (−0.866 + 0.5i)37-s + (0.766 − 0.642i)41-s + (0.342 + 0.939i)43-s + (−0.173 + 0.984i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.696 + 0.717i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.696 + 0.717i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.696635383 + 0.7172685116i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.696635383 + 0.7172685116i\) |
\(L(1)\) |
\(\approx\) |
\(1.123860955 + 0.05937314639i\) |
\(L(1)\) |
\(\approx\) |
\(1.123860955 + 0.05937314639i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (0.342 - 0.939i)T \) |
| 7 | \( 1 + (-0.173 + 0.984i)T \) |
| 11 | \( 1 + (-0.342 - 0.939i)T \) |
| 13 | \( 1 + (0.642 + 0.766i)T \) |
| 17 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.866 - 0.5i)T \) |
| 23 | \( 1 + (0.173 + 0.984i)T \) |
| 29 | \( 1 + (0.642 - 0.766i)T \) |
| 31 | \( 1 + (0.173 + 0.984i)T \) |
| 37 | \( 1 + (-0.866 + 0.5i)T \) |
| 41 | \( 1 + (0.766 - 0.642i)T \) |
| 43 | \( 1 + (0.342 + 0.939i)T \) |
| 47 | \( 1 + (-0.173 + 0.984i)T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 + (0.342 - 0.939i)T \) |
| 61 | \( 1 + (0.984 + 0.173i)T \) |
| 67 | \( 1 + (0.642 + 0.766i)T \) |
| 71 | \( 1 + (-0.5 - 0.866i)T \) |
| 73 | \( 1 + (0.5 - 0.866i)T \) |
| 79 | \( 1 + (0.766 + 0.642i)T \) |
| 83 | \( 1 + (0.642 - 0.766i)T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.939 + 0.342i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.4496281687130509308810133521, −22.956350912153800177025134816502, −22.37317660945569520521929184733, −21.00893875285894141015860632706, −20.53809114195712155862193240611, −19.4802471731763372663596577550, −18.47796969016334050040043772153, −17.84590374462129126753348570956, −16.94502452918801243446523060565, −15.94124779148121655075170839106, −14.91983473094445693240014928820, −14.20712258338365374719953065780, −13.290754735639607961078474122198, −12.43820388951483293551841055033, −11.09658282949327481368506929715, −10.36089700782947733704653144218, −9.82075374391666573474964479839, −8.337074912440005530072997952302, −7.29440656192943574340715030520, −6.65563945146793599388450091745, −5.48838347892824810838150894792, −4.22090288893847679266016372693, −3.19128977435857070984164600757, −2.09264202827234879630487093372, −0.56050749732884268500353117045,
1.058998411568333840894467577575, 2.19900953499705363603116097318, 3.49952421415537278344080081270, 4.74467572787830261363318528171, 5.7565874126788517374813212569, 6.38958283298294408447767970257, 8.09176700752719396240582652259, 8.72854962452372152745693490327, 9.459664754975811908973457709280, 10.70385027282671440261768034565, 11.72053458384528859016312374313, 12.5912896539105420328879314795, 13.3724811297764095676263791472, 14.26004288035947989554760604847, 15.56770945271928007732863591727, 16.0732136906264924891208534984, 17.07905058821896574184255905008, 17.870455072031605686669942033364, 19.149135734536007330116135101032, 19.36731091104087834417048599975, 21.07329718663918746590262339843, 21.19427586858252530820342487901, 22.05004169591526112951415295543, 23.4647038731866145664002336160, 23.95202003431738463953940798769