L(s) = 1 | + (0.156 − 0.987i)2-s + (−0.760 − 0.649i)3-s + (−0.951 − 0.309i)4-s + (−0.760 + 0.649i)6-s + (0.923 − 0.382i)7-s + (−0.453 + 0.891i)8-s + (0.156 + 0.987i)9-s + (0.852 + 0.522i)11-s + (0.522 + 0.852i)12-s + (0.587 − 0.809i)13-s + (−0.233 − 0.972i)14-s + (0.809 + 0.587i)16-s + 18-s + (−0.891 − 0.453i)19-s + (−0.951 − 0.309i)21-s + (0.649 − 0.760i)22-s + ⋯ |
L(s) = 1 | + (0.156 − 0.987i)2-s + (−0.760 − 0.649i)3-s + (−0.951 − 0.309i)4-s + (−0.760 + 0.649i)6-s + (0.923 − 0.382i)7-s + (−0.453 + 0.891i)8-s + (0.156 + 0.987i)9-s + (0.852 + 0.522i)11-s + (0.522 + 0.852i)12-s + (0.587 − 0.809i)13-s + (−0.233 − 0.972i)14-s + (0.809 + 0.587i)16-s + 18-s + (−0.891 − 0.453i)19-s + (−0.951 − 0.309i)21-s + (0.649 − 0.760i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.0676 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.0676 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.2966253452 - 0.3174217176i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.2966253452 - 0.3174217176i\) |
\(L(1)\) |
\(\approx\) |
\(0.5462392375 - 0.5548908375i\) |
\(L(1)\) |
\(\approx\) |
\(0.5462392375 - 0.5548908375i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (0.156 - 0.987i)T \) |
| 3 | \( 1 + (-0.760 - 0.649i)T \) |
| 7 | \( 1 + (0.923 - 0.382i)T \) |
| 11 | \( 1 + (0.852 + 0.522i)T \) |
| 13 | \( 1 + (0.587 - 0.809i)T \) |
| 19 | \( 1 + (-0.891 - 0.453i)T \) |
| 23 | \( 1 + (-0.852 - 0.522i)T \) |
| 29 | \( 1 + (-0.649 + 0.760i)T \) |
| 31 | \( 1 + (-0.996 - 0.0784i)T \) |
| 37 | \( 1 + (-0.852 + 0.522i)T \) |
| 41 | \( 1 + (-0.972 - 0.233i)T \) |
| 43 | \( 1 + (-0.707 - 0.707i)T \) |
| 47 | \( 1 + (0.951 + 0.309i)T \) |
| 53 | \( 1 + (0.453 + 0.891i)T \) |
| 59 | \( 1 + (-0.156 - 0.987i)T \) |
| 61 | \( 1 + (0.522 - 0.852i)T \) |
| 67 | \( 1 + (-0.309 - 0.951i)T \) |
| 71 | \( 1 + (-0.760 - 0.649i)T \) |
| 73 | \( 1 + (-0.972 + 0.233i)T \) |
| 79 | \( 1 + (-0.996 + 0.0784i)T \) |
| 83 | \( 1 + (0.891 + 0.453i)T \) |
| 89 | \( 1 + (0.587 + 0.809i)T \) |
| 97 | \( 1 + (-0.649 + 0.760i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.39692873755762563822389764174, −23.780290999276047860394170547981, −23.037684098714670974709448998153, −21.965139300081003186275416602210, −21.56840154232944770393884972936, −20.67866448290754571912366005421, −19.083909448248455055219963780213, −18.22492123554605791094688524598, −17.41644424336734157897028356545, −16.681863190689424180330049999783, −16.01240593490397034364769295600, −14.96190462056636361460524165884, −14.43484161966760175788693774486, −13.35479256177443230684514057966, −12.00995026238815158650939293078, −11.45592016100504993001132971626, −10.23595239011319237830156054738, −9.06441918262979105231159389481, −8.49834229090092631599673492319, −7.146314809425625599640773523982, −6.0944809011127549116054561720, −5.52060661721271408436201165850, −4.308336466389172503871547448283, −3.753899277860106572037192938480, −1.51905424782094419390295640753,
0.13008876013535741271636117219, 1.3527852948767726881335202592, 2.07188175952835578960418001869, 3.72642890693434666230339090701, 4.71849011569620183888243102265, 5.610969048700916205087139606815, 6.79820262308171043693604926288, 7.989828067625075996608196140963, 8.9058923529238221811117302542, 10.38313308314116931251764727586, 10.8627218900523078417498819521, 11.79983407420780088563168583231, 12.49471979533881679159037868898, 13.39671327469718495379208004469, 14.237647739241914037254560025412, 15.20940362983215238240777662994, 16.81963239545676412502434678946, 17.469721960963727847880937007732, 18.17335031225478563862451345327, 18.92379824319862355943802602713, 20.09619238622989931269181288239, 20.49745612132822522819529147133, 21.8573318400334564123778997671, 22.29339930192062129730976074992, 23.38325395371194597689372530190