| L(s) = 1 | + (−0.985 + 0.170i)2-s + (−0.809 − 0.587i)3-s + (0.941 − 0.336i)4-s + (0.897 + 0.441i)6-s + (−0.870 + 0.491i)8-s + (0.309 + 0.951i)9-s + (−0.959 − 0.281i)12-s + (0.0285 + 0.999i)13-s + (0.774 − 0.633i)16-s + (−0.516 − 0.856i)17-s + (−0.466 − 0.884i)18-s + (0.0855 + 0.996i)19-s + (−0.841 − 0.540i)23-s + (0.993 + 0.113i)24-s + (−0.198 − 0.980i)26-s + (0.309 − 0.951i)27-s + ⋯ |
| L(s) = 1 | + (−0.985 + 0.170i)2-s + (−0.809 − 0.587i)3-s + (0.941 − 0.336i)4-s + (0.897 + 0.441i)6-s + (−0.870 + 0.491i)8-s + (0.309 + 0.951i)9-s + (−0.959 − 0.281i)12-s + (0.0285 + 0.999i)13-s + (0.774 − 0.633i)16-s + (−0.516 − 0.856i)17-s + (−0.466 − 0.884i)18-s + (0.0855 + 0.996i)19-s + (−0.841 − 0.540i)23-s + (0.993 + 0.113i)24-s + (−0.198 − 0.980i)26-s + (0.309 − 0.951i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4235 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.920 + 0.391i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4235 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.920 + 0.391i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5326702249 + 0.1086530592i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5326702249 + 0.1086530592i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5008605725 + 0.01814711065i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5008605725 + 0.01814711065i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 \) |
| good | 2 | \( 1 + (-0.985 + 0.170i)T \) |
| 3 | \( 1 + (-0.809 - 0.587i)T \) |
| 13 | \( 1 + (0.0285 + 0.999i)T \) |
| 17 | \( 1 + (-0.516 - 0.856i)T \) |
| 19 | \( 1 + (0.0855 + 0.996i)T \) |
| 23 | \( 1 + (-0.841 - 0.540i)T \) |
| 29 | \( 1 + (-0.974 - 0.226i)T \) |
| 31 | \( 1 + (0.564 + 0.825i)T \) |
| 37 | \( 1 + (-0.610 + 0.791i)T \) |
| 41 | \( 1 + (0.696 - 0.717i)T \) |
| 43 | \( 1 + (0.415 - 0.909i)T \) |
| 47 | \( 1 + (-0.466 + 0.884i)T \) |
| 53 | \( 1 + (-0.774 - 0.633i)T \) |
| 59 | \( 1 + (-0.696 - 0.717i)T \) |
| 61 | \( 1 + (-0.985 - 0.170i)T \) |
| 67 | \( 1 + (0.142 - 0.989i)T \) |
| 71 | \( 1 + (-0.921 + 0.389i)T \) |
| 73 | \( 1 + (0.998 - 0.0570i)T \) |
| 79 | \( 1 + (0.736 - 0.676i)T \) |
| 83 | \( 1 + (0.254 + 0.967i)T \) |
| 89 | \( 1 + (0.654 - 0.755i)T \) |
| 97 | \( 1 + (0.993 + 0.113i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.94505142266319489263538127526, −17.79011588222017434010831256812, −17.079809607524322206889489810134, −16.46412231912568280470542301669, −15.64942424623342238053997681821, −15.34943419341375639874373607427, −14.62586312528850187988470062458, −13.28010485476996194093318792428, −12.722061270338395583549073006461, −11.93196499209891076496830395328, −11.25722976910997779745763980880, −10.74612334734812570592803854035, −10.15975016318833165576498807132, −9.41178888646920750015782068625, −8.884714482761053502862847646671, −7.89504768628025220835328226125, −7.35194734654339771502782630692, −6.26755041767902124728195183193, −5.96836572256071156710791858953, −4.98679910171374756455709890136, −4.03004211957775485908734372657, −3.311563203317998280847543886, −2.367820534321726130391787071902, −1.36008727845733521741908869639, −0.40816254896080275360203172955,
0.57996577412739302719842900599, 1.727985535245112284141444082103, 2.04736320461770067386952429181, 3.22843167276823177699755388529, 4.42940725593594763163588351677, 5.22248440572981522746904208739, 6.15494087759379388466868222591, 6.516945817920555687585515961065, 7.33845111959917530043321438344, 7.873405165886371869068425314923, 8.71597293076690611821842463344, 9.468199034186617111650051049937, 10.19215018398258511559370360077, 10.89400999342995225938231081821, 11.50575328600683038114664600935, 12.12023679551615707883311895998, 12.645349981386549169856139033759, 13.93923194963811468738525146660, 14.1280789769419165745108134491, 15.37254690755233516244096664574, 16.00305079894873060924469258524, 16.54102733731070819165612421176, 17.08576963116021814558753282958, 17.82617206579596650577088584636, 18.33007615116376453507215726063