| L(s) = 1 | + (−0.5 + 0.866i)11-s − i·13-s + (0.866 + 0.5i)17-s + (−0.5 − 0.866i)19-s + (−0.866 + 0.5i)23-s + 29-s + (0.5 − 0.866i)31-s + (0.866 − 0.5i)37-s − 41-s − i·43-s + (0.866 − 0.5i)47-s + (−0.866 − 0.5i)53-s + (0.5 − 0.866i)59-s + (−0.5 − 0.866i)61-s + (0.866 + 0.5i)67-s + ⋯ |
| L(s) = 1 | + (−0.5 + 0.866i)11-s − i·13-s + (0.866 + 0.5i)17-s + (−0.5 − 0.866i)19-s + (−0.866 + 0.5i)23-s + 29-s + (0.5 − 0.866i)31-s + (0.866 − 0.5i)37-s − 41-s − i·43-s + (0.866 − 0.5i)47-s + (−0.866 − 0.5i)53-s + (0.5 − 0.866i)59-s + (−0.5 − 0.866i)61-s + (0.866 + 0.5i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 420 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.578 - 0.815i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 420 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.578 - 0.815i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.459922083 - 0.7543513700i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.459922083 - 0.7543513700i\) |
| \(L(1)\) |
\(\approx\) |
\(1.045608048 - 0.09732616794i\) |
| \(L(1)\) |
\(\approx\) |
\(1.045608048 - 0.09732616794i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
| good | 11 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 - iT \) |
| 17 | \( 1 + (0.866 + 0.5i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
| 23 | \( 1 + (-0.866 + 0.5i)T \) |
| 29 | \( 1 + T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.866 - 0.5i)T \) |
| 41 | \( 1 - T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (0.866 - 0.5i)T \) |
| 53 | \( 1 + (-0.866 - 0.5i)T \) |
| 59 | \( 1 + (0.5 - 0.866i)T \) |
| 61 | \( 1 + (-0.5 - 0.866i)T \) |
| 67 | \( 1 + (0.866 + 0.5i)T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 + (0.866 + 0.5i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 - iT \) |
| 89 | \( 1 + (-0.5 - 0.866i)T \) |
| 97 | \( 1 + iT \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.9334938065649561375887099948, −23.48286222552092610987267378207, −22.37520239463095997947955220690, −21.426494282551480692479700870113, −20.88547958723925768681303570749, −19.75469567658133601525759646096, −18.797089649814561356641089773047, −18.32078642807974005496532658505, −16.95520043367058573426607873161, −16.368491317507570211916054568346, −15.48425562190542985019700819362, −14.17328767513794663200436729546, −13.84167992176810061519367086375, −12.46496903884925628311647425802, −11.78668077772905774062558886439, −10.66026554010675502445387450670, −9.86373493184672129822757506829, −8.67045770212350719498517033158, −7.92841361529069897905080006462, −6.69107516094919244102366006112, −5.79946003035810532643039255446, −4.658227504014382444246808284496, −3.53525145674408484963749600530, −2.38297658287480656294076215321, −0.996188950512290141695270630557,
0.526838685381652222100906417033, 2.02359897824396613168286740701, 3.13709545177675729799077973991, 4.39333926027289140036825852719, 5.39386348380666874437025799411, 6.43360626213394056195638997274, 7.64250731558098140484033334555, 8.29166802534649320301777329244, 9.69269583530282160160115700013, 10.29015135913559631703221862526, 11.3908266766722709672273248269, 12.48382006697561026416555346439, 13.10192543987073478540632987448, 14.2418467346139678990984936941, 15.22026223910581052787362992589, 15.80180370218556262258854896567, 17.08141831742969032966507397984, 17.724643338498765773502115888610, 18.60766363852978370504019264954, 19.687132620337775046089576236341, 20.341567884440367724973302705501, 21.320215757153344429112565863095, 22.12043423773576471713291382962, 23.184602674686962019996963277032, 23.65827422995753223867971359889