| L(s) = 1 | + (−0.866 + 0.5i)5-s + (−0.5 + 0.866i)7-s + (0.866 + 0.5i)11-s + (−0.866 + 0.5i)13-s + 17-s − i·19-s + (0.5 + 0.866i)23-s + (0.5 − 0.866i)25-s + (−0.5 − 0.866i)31-s − i·35-s − i·37-s + (0.5 + 0.866i)41-s + (−0.866 − 0.5i)43-s + (0.5 − 0.866i)47-s + (−0.5 − 0.866i)49-s + ⋯ |
| L(s) = 1 | + (−0.866 + 0.5i)5-s + (−0.5 + 0.866i)7-s + (0.866 + 0.5i)11-s + (−0.866 + 0.5i)13-s + 17-s − i·19-s + (0.5 + 0.866i)23-s + (0.5 − 0.866i)25-s + (−0.5 − 0.866i)31-s − i·35-s − i·37-s + (0.5 + 0.866i)41-s + (−0.866 − 0.5i)43-s + (0.5 − 0.866i)47-s + (−0.5 − 0.866i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4176 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.976 - 0.216i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4176 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.976 - 0.216i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.118382665 - 0.1224828221i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.118382665 - 0.1224828221i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8670075670 + 0.1211085097i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8670075670 + 0.1211085097i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 29 | \( 1 \) |
| good | 5 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 11 | \( 1 + (0.866 + 0.5i)T \) |
| 13 | \( 1 + (-0.866 + 0.5i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 - iT \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 - iT \) |
| 41 | \( 1 + (0.5 + 0.866i)T \) |
| 43 | \( 1 + (-0.866 - 0.5i)T \) |
| 47 | \( 1 + (0.5 - 0.866i)T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 + (0.866 - 0.5i)T \) |
| 61 | \( 1 + (-0.866 - 0.5i)T \) |
| 67 | \( 1 + (0.866 - 0.5i)T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (0.866 + 0.5i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.73854768789861762489510077213, −17.51980905107799858014687799746, −16.85353843164339544015537562455, −16.52235697258720894023257736961, −15.92442210412932307235158077801, −14.87985819406034600979669034889, −14.47803327878717822725014347650, −13.70299088133394455304901558737, −12.78518067396837441843729004380, −12.30158866112153065830519420269, −11.76430271868459390057625202722, −10.77204663936071724431283192571, −10.25469602052083342273998633267, −9.43969792313988746497312334, −8.69131566827676192299013855363, −7.90904637012403037135677049992, −7.36828493886122597086849310701, −6.63060241699929857187709236555, −5.74733230794805539237451573190, −4.884381684898625323504918244745, −4.131055582642983380621078145144, −3.486887654416862156827215198684, −2.86414895937234216527688475613, −1.35932894420295968346235501927, −0.80444442777434986064183764369,
0.435801340676719743158569996627, 1.79163112591174735037297878617, 2.591404542938551500691154819681, 3.37821330660903472733208689244, 4.036958115684590653502811793394, 4.953418627889596410957949957924, 5.67734709285724955854464785688, 6.7316633868177557431660052903, 7.07010684453312763141881202351, 7.86399650193299458218532478696, 8.742322173456574793351148224140, 9.53139253138567638271904820649, 9.84631433134589962419781416006, 11.10705965969163711460958777166, 11.53844305561181138581823483126, 12.22019774417086974529440834483, 12.67216684040907207429505744678, 13.67689506901417675911447138090, 14.59169835128741947207027079366, 14.96865883439188789221944784459, 15.52297677180337557658973020923, 16.362888340793756488421369838765, 16.92607419681821707747951043051, 17.75737808652844775490924757876, 18.51866798998092316248939209111