| L(s) = 1 | + (−0.866 − 0.5i)5-s + (−0.5 − 0.866i)7-s + (0.5 + 0.866i)11-s + (0.866 + 0.5i)13-s + i·17-s + 19-s + (−0.5 + 0.866i)23-s + (0.5 + 0.866i)25-s + (0.866 + 0.5i)31-s − i·35-s − 37-s + (−0.866 − 0.5i)41-s + (0.5 + 0.866i)43-s + (0.866 − 0.5i)47-s + (−0.5 + 0.866i)49-s + ⋯ |
| L(s) = 1 | + (−0.866 − 0.5i)5-s + (−0.5 − 0.866i)7-s + (0.5 + 0.866i)11-s + (0.866 + 0.5i)13-s + i·17-s + 19-s + (−0.5 + 0.866i)23-s + (0.5 + 0.866i)25-s + (0.866 + 0.5i)31-s − i·35-s − 37-s + (−0.866 − 0.5i)41-s + (0.5 + 0.866i)43-s + (0.866 − 0.5i)47-s + (−0.5 + 0.866i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4176 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.397 + 0.917i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4176 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.397 + 0.917i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4188427607 + 0.6376357103i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4188427607 + 0.6376357103i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8420859207 + 0.04388116637i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8420859207 + 0.04388116637i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 29 | \( 1 \) |
| good | 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (0.866 + 0.5i)T \) |
| 17 | \( 1 + iT \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + (-0.5 + 0.866i)T \) |
| 31 | \( 1 + (0.866 + 0.5i)T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 + (-0.866 - 0.5i)T \) |
| 43 | \( 1 + (0.5 + 0.866i)T \) |
| 47 | \( 1 + (0.866 - 0.5i)T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 + (-0.866 - 0.5i)T \) |
| 61 | \( 1 + (0.5 + 0.866i)T \) |
| 67 | \( 1 + (-0.866 - 0.5i)T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 + (-0.866 + 0.5i)T \) |
| 83 | \( 1 + (-0.866 + 0.5i)T \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 + (-0.866 + 0.5i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.406200214255183141986609472054, −17.68620546642207231817826088208, −16.57147730118371928009329259253, −16.03816626660248665149036641849, −15.58636162782782130118498291889, −14.97235269684989573754089177935, −13.93175836584794471893361722354, −13.69343487416838007501926792943, −12.52334120078925148616912862907, −11.93798690089555375305052294321, −11.489851522470770577828177971539, −10.70287057663900630259181666882, −9.97534805448596374716166943903, −8.9966830841803756350795197718, −8.57445067529636563166723293624, −7.76849862497899239275042450766, −6.99317309437009679005277172039, −6.1940412724943671913407715241, −5.69079631364499222400312147230, −4.67208587203120164900246767612, −3.76176507199308880828745344217, −3.08002355498186406292703938297, −2.63329933192057322149501903262, −1.23267916519244336658834882357, −0.2423228017727836044672820687,
1.165541419533632074923224944666, 1.610057062660765933170370416406, 3.09291907939441940123320169780, 3.85173335388771709066474348294, 4.166531236014313624902541895737, 5.09803592257825450451076088689, 6.04992237412541854652592441505, 6.91855818786181425346335463414, 7.3658116052571243652981694421, 8.22295172170090211632261175651, 8.86961441072012863077776132656, 9.701837684494088793342606548, 10.30811704926341265123080666770, 11.162881421912296090206072317036, 11.85700015040022518141174114025, 12.38315727664626993238741082815, 13.19766233081531652976333716198, 13.790076842197508015105737909987, 14.50908009239335888892528899850, 15.503762911697344247877618948804, 15.817643639460819245454488060406, 16.56210723626227779829294425368, 17.22030581210440857665912345355, 17.7765074977027110098647878990, 18.7737239781798425963764635212