| L(s) = 1 | + (−0.576 − 0.816i)2-s + (−0.334 + 0.942i)4-s + (−0.854 − 0.519i)5-s + (−0.775 − 0.631i)7-s + (0.962 − 0.269i)8-s + (0.0682 + 0.997i)10-s + (0.917 + 0.398i)11-s + (−0.0682 − 0.997i)13-s + (−0.0682 + 0.997i)14-s + (−0.775 − 0.631i)16-s + (0.203 − 0.979i)17-s + (−0.203 + 0.979i)19-s + (0.775 − 0.631i)20-s + (−0.203 − 0.979i)22-s + (−0.775 − 0.631i)23-s + ⋯ |
| L(s) = 1 | + (−0.576 − 0.816i)2-s + (−0.334 + 0.942i)4-s + (−0.854 − 0.519i)5-s + (−0.775 − 0.631i)7-s + (0.962 − 0.269i)8-s + (0.0682 + 0.997i)10-s + (0.917 + 0.398i)11-s + (−0.0682 − 0.997i)13-s + (−0.0682 + 0.997i)14-s + (−0.775 − 0.631i)16-s + (0.203 − 0.979i)17-s + (−0.203 + 0.979i)19-s + (0.775 − 0.631i)20-s + (−0.203 − 0.979i)22-s + (−0.775 − 0.631i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 417 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.749 + 0.661i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 417 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.749 + 0.661i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.08667347158 - 0.2291058222i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(-0.08667347158 - 0.2291058222i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4336856148 - 0.2917757342i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4336856148 - 0.2917757342i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 139 | \( 1 \) |
| good | 2 | \( 1 + (-0.576 - 0.816i)T \) |
| 5 | \( 1 + (-0.854 - 0.519i)T \) |
| 7 | \( 1 + (-0.775 - 0.631i)T \) |
| 11 | \( 1 + (0.917 + 0.398i)T \) |
| 13 | \( 1 + (-0.0682 - 0.997i)T \) |
| 17 | \( 1 + (0.203 - 0.979i)T \) |
| 19 | \( 1 + (-0.203 + 0.979i)T \) |
| 23 | \( 1 + (-0.775 - 0.631i)T \) |
| 29 | \( 1 + (0.334 - 0.942i)T \) |
| 31 | \( 1 + (-0.990 - 0.136i)T \) |
| 37 | \( 1 + (0.460 + 0.887i)T \) |
| 41 | \( 1 + (-0.682 + 0.730i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.854 + 0.519i)T \) |
| 53 | \( 1 + (-0.576 - 0.816i)T \) |
| 59 | \( 1 + (-0.334 - 0.942i)T \) |
| 61 | \( 1 + (-0.682 - 0.730i)T \) |
| 67 | \( 1 + (-0.917 + 0.398i)T \) |
| 71 | \( 1 + (-0.854 - 0.519i)T \) |
| 73 | \( 1 + (-0.962 + 0.269i)T \) |
| 79 | \( 1 + (0.682 + 0.730i)T \) |
| 83 | \( 1 + (0.917 + 0.398i)T \) |
| 89 | \( 1 + (-0.460 + 0.887i)T \) |
| 97 | \( 1 - T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.83439840191375328079754420786, −23.82383765562979897853474936988, −23.42206296746766330574153139798, −22.129779378687055615117681305037, −21.81147196052816704919203645197, −19.74093743342896502015113486158, −19.565422112898594165105455885524, −18.72328763151417946613256299244, −17.883933142562093328375349116286, −16.66317330967021310487607896565, −16.15928845821612260338567526852, −15.17867558592134405532928156119, −14.58545549472190774050998007157, −13.54840006809055285142180486614, −12.22543046106039845991763136199, −11.3290301214683508520612008430, −10.33196653978472047510752527218, −9.147437631892160090809148297742, −8.652417466049044748937570777560, −7.36326797074426400583708643738, −6.62915468968583013046522215728, −5.84793869998952971748601312266, −4.392081222353143684557819283494, −3.36740106646266129979535702744, −1.73460956577608210328411400757,
0.182259467548113459064845996012, 1.42392182003894063025194018760, 3.06365207887040871781046236696, 3.84359429500773541476628387278, 4.76500770733229539946737615575, 6.50403004587815370063711035453, 7.63700959398804963656791162345, 8.28403725679356446574146157347, 9.5330275216370024745850562806, 10.08025700914217393279420560966, 11.26709898568614271545749313348, 12.122134944165621847893769770154, 12.74110481476646750151918115498, 13.71128001837321488564734203193, 14.98790042269610509525446462643, 16.29300701256154747420417072486, 16.62827225690313936862102861923, 17.69204383902831418115629657475, 18.72401707368279758297638836375, 19.52617004015489419680445683977, 20.31479915778149127868933610757, 20.545253034523400755037461737, 22.11082645988445682257117655161, 22.726961393463407146414552822621, 23.402767078808147081594052475225