L(s) = 1 | + (−0.342 − 0.939i)2-s + (0.939 + 0.342i)3-s + (−0.766 + 0.642i)4-s + (−0.984 + 0.173i)5-s − i·6-s + (−0.173 − 0.984i)7-s + (0.866 + 0.5i)8-s + (0.766 + 0.642i)9-s + (0.5 + 0.866i)10-s + (−0.939 + 0.342i)12-s + (−0.642 − 0.766i)13-s + (−0.866 + 0.5i)14-s + (−0.984 − 0.173i)15-s + (0.173 − 0.984i)16-s + (0.642 − 0.766i)17-s + (0.342 − 0.939i)18-s + ⋯ |
L(s) = 1 | + (−0.342 − 0.939i)2-s + (0.939 + 0.342i)3-s + (−0.766 + 0.642i)4-s + (−0.984 + 0.173i)5-s − i·6-s + (−0.173 − 0.984i)7-s + (0.866 + 0.5i)8-s + (0.766 + 0.642i)9-s + (0.5 + 0.866i)10-s + (−0.939 + 0.342i)12-s + (−0.642 − 0.766i)13-s + (−0.866 + 0.5i)14-s + (−0.984 − 0.173i)15-s + (0.173 − 0.984i)16-s + (0.642 − 0.766i)17-s + (0.342 − 0.939i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 407 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.319 - 0.947i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 407 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.319 - 0.947i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6021287078 - 0.8385753563i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6021287078 - 0.8385753563i\) |
\(L(1)\) |
\(\approx\) |
\(0.8250991507 - 0.4405914386i\) |
\(L(1)\) |
\(\approx\) |
\(0.8250991507 - 0.4405914386i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 37 | \( 1 \) |
good | 2 | \( 1 + (-0.342 - 0.939i)T \) |
| 3 | \( 1 + (0.939 + 0.342i)T \) |
| 5 | \( 1 + (-0.984 + 0.173i)T \) |
| 7 | \( 1 + (-0.173 - 0.984i)T \) |
| 13 | \( 1 + (-0.642 - 0.766i)T \) |
| 17 | \( 1 + (0.642 - 0.766i)T \) |
| 19 | \( 1 + (-0.342 + 0.939i)T \) |
| 23 | \( 1 + (0.866 - 0.5i)T \) |
| 29 | \( 1 + (-0.866 - 0.5i)T \) |
| 31 | \( 1 - iT \) |
| 41 | \( 1 + (0.766 - 0.642i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 + (0.173 - 0.984i)T \) |
| 59 | \( 1 + (0.984 + 0.173i)T \) |
| 61 | \( 1 + (0.642 + 0.766i)T \) |
| 67 | \( 1 + (-0.173 - 0.984i)T \) |
| 71 | \( 1 + (-0.939 - 0.342i)T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 + (0.984 - 0.173i)T \) |
| 83 | \( 1 + (-0.766 - 0.642i)T \) |
| 89 | \( 1 + (-0.984 - 0.173i)T \) |
| 97 | \( 1 + (0.866 - 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.61857796897469071932302943195, −23.94135937235168375610890210043, −23.29470775750083589375126366752, −22.0406446126140617702489115675, −21.17295037453301982433096326772, −19.703695816610552549088908647452, −19.30680996195380451721378012620, −18.69029497130345665333755616175, −17.6543570980718074702562075176, −16.48760633995389304689845955261, −15.66970425117348562436412696945, −14.903352490315790712807174454609, −14.45324516391884373039920415745, −13.05782808039136111260535885092, −12.447551834397255698764554856307, −11.16174123174550646192183151176, −9.620242400048974801039509067509, −8.96906409501363716814092994037, −8.23093322438536734800819750228, −7.34544787904987460072048918672, −6.56516909410408109585051520638, −5.17128043686000762312092384557, −4.12763858372394336221357066671, −2.910199628588235161564663221760, −1.39762815460089539918685026849,
0.6678196410910188899848100343, 2.31673584869911212415305874675, 3.39939878017815690677169852047, 3.94744625437778684412970907655, 4.9913315233720705152729275438, 7.30213186266211993549410902389, 7.72670717382649967829593167631, 8.688500483248781235031808025870, 9.85064426290961818548333485154, 10.4072975442866366607394865012, 11.38395735800775668476584353149, 12.50758927301717601353918841391, 13.27360255471764521361764546543, 14.31783507527308043483927032695, 15.05249108145019796762250921592, 16.33418073456065920040321060609, 16.97308846701512501620671788271, 18.39278803264447259859058277688, 19.15130467002468874665070537896, 19.72357688854888216114550813583, 20.63307907554345608152603705716, 20.89434382412610249444612659505, 22.51525381539176811102111317604, 22.73527819194490510204561453244, 23.99312052759588851459278387371