L(s) = 1 | + (0.354 − 0.935i)5-s + (0.120 − 0.992i)7-s + (0.885 + 0.464i)11-s + (−0.120 + 0.992i)17-s − 19-s + 23-s + (−0.748 − 0.663i)25-s + (0.885 − 0.464i)29-s + (−0.748 + 0.663i)31-s + (−0.885 − 0.464i)35-s + (−0.748 + 0.663i)37-s + (−0.970 + 0.239i)41-s + (−0.748 − 0.663i)43-s + (−0.568 − 0.822i)47-s + (−0.970 − 0.239i)49-s + ⋯ |
L(s) = 1 | + (0.354 − 0.935i)5-s + (0.120 − 0.992i)7-s + (0.885 + 0.464i)11-s + (−0.120 + 0.992i)17-s − 19-s + 23-s + (−0.748 − 0.663i)25-s + (0.885 − 0.464i)29-s + (−0.748 + 0.663i)31-s + (−0.885 − 0.464i)35-s + (−0.748 + 0.663i)37-s + (−0.970 + 0.239i)41-s + (−0.748 − 0.663i)43-s + (−0.568 − 0.822i)47-s + (−0.970 − 0.239i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.806 - 0.590i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.806 - 0.590i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3904742926 - 1.194198182i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3904742926 - 1.194198182i\) |
\(L(1)\) |
\(\approx\) |
\(0.9980979648 - 0.3557147028i\) |
\(L(1)\) |
\(\approx\) |
\(0.9980979648 - 0.3557147028i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 5 | \( 1 + (0.354 - 0.935i)T \) |
| 7 | \( 1 + (0.120 - 0.992i)T \) |
| 11 | \( 1 + (0.885 + 0.464i)T \) |
| 17 | \( 1 + (-0.120 + 0.992i)T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + (0.885 - 0.464i)T \) |
| 31 | \( 1 + (-0.748 + 0.663i)T \) |
| 37 | \( 1 + (-0.748 + 0.663i)T \) |
| 41 | \( 1 + (-0.970 + 0.239i)T \) |
| 43 | \( 1 + (-0.748 - 0.663i)T \) |
| 47 | \( 1 + (-0.568 - 0.822i)T \) |
| 53 | \( 1 + (0.120 - 0.992i)T \) |
| 59 | \( 1 + (-0.354 + 0.935i)T \) |
| 61 | \( 1 + (-0.120 - 0.992i)T \) |
| 67 | \( 1 + (-0.568 - 0.822i)T \) |
| 71 | \( 1 + (0.970 - 0.239i)T \) |
| 73 | \( 1 + (-0.885 - 0.464i)T \) |
| 79 | \( 1 + (-0.568 - 0.822i)T \) |
| 83 | \( 1 + (-0.970 - 0.239i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (0.354 + 0.935i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.72325376417616327673116716685, −18.15772612630423724751681320225, −17.42319631784087454230771517604, −16.7979044125593386181621406568, −15.89737379229580560698088627710, −15.260877535785867142739076954956, −14.56637484665349202568959663396, −14.19045653792208543440219435025, −13.30010119937691649256347319644, −12.57384928010134459127334177283, −11.68284526006977864311603537571, −11.27723666990240255101449302998, −10.53942828938888274965398364386, −9.67364988473920953249662668885, −9.0012416284026169291603210, −8.50394080346759014553438627141, −7.39683031206218516037882447550, −6.72181302647311941651515591966, −6.156034874915247595188657960322, −5.402321430506943419063970777608, −4.58563547283205437318590205952, −3.51922418427098902244178811729, −2.86402764552842164044915892343, −2.17542601078800389613409482207, −1.26003871520646231877584564628,
0.333262993227194912501950728426, 1.56467321372733078450394934208, 1.741744200683694752379905185220, 3.24841583299985111748393097523, 4.015933033757630338678676608902, 4.6497603302351267223287421298, 5.26800328542435614077723836469, 6.478210486307376999622506838050, 6.72385051121533128079148431511, 7.80042801231057036612145698354, 8.59657231319788373502069301025, 8.990979824467169574318142348328, 10.09465332464149550525998798035, 10.355745047754988887480956749699, 11.357399103142545913497975057023, 12.113637054920168464639603045677, 12.79543395381378134617756556505, 13.35761546156153434384917261958, 14.007606795066236151699202027516, 14.82334874355813852512507818316, 15.3656774828540661495400771134, 16.46129074276485570523084705651, 16.92205685850923288801448789890, 17.29983649371075178725844079546, 17.928494628510087490320886790149