L(s) = 1 | + (−0.120 + 0.992i)5-s + (−0.885 + 0.464i)7-s + (0.354 + 0.935i)11-s + (−0.885 + 0.464i)17-s + 19-s − 23-s + (−0.970 − 0.239i)25-s + (−0.354 + 0.935i)29-s + (0.970 − 0.239i)31-s + (−0.354 − 0.935i)35-s + (−0.970 + 0.239i)37-s + (0.568 + 0.822i)41-s + (0.970 + 0.239i)43-s + (−0.748 + 0.663i)47-s + (0.568 − 0.822i)49-s + ⋯ |
L(s) = 1 | + (−0.120 + 0.992i)5-s + (−0.885 + 0.464i)7-s + (0.354 + 0.935i)11-s + (−0.885 + 0.464i)17-s + 19-s − 23-s + (−0.970 − 0.239i)25-s + (−0.354 + 0.935i)29-s + (0.970 − 0.239i)31-s + (−0.354 − 0.935i)35-s + (−0.970 + 0.239i)37-s + (0.568 + 0.822i)41-s + (0.970 + 0.239i)43-s + (−0.748 + 0.663i)47-s + (0.568 − 0.822i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.230 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.230 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.4809387715 + 0.6080311011i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.4809387715 + 0.6080311011i\) |
\(L(1)\) |
\(\approx\) |
\(0.7296817486 + 0.4000679818i\) |
\(L(1)\) |
\(\approx\) |
\(0.7296817486 + 0.4000679818i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 5 | \( 1 + (-0.120 + 0.992i)T \) |
| 7 | \( 1 + (-0.885 + 0.464i)T \) |
| 11 | \( 1 + (0.354 + 0.935i)T \) |
| 17 | \( 1 + (-0.885 + 0.464i)T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 + (-0.354 + 0.935i)T \) |
| 31 | \( 1 + (0.970 - 0.239i)T \) |
| 37 | \( 1 + (-0.970 + 0.239i)T \) |
| 41 | \( 1 + (0.568 + 0.822i)T \) |
| 43 | \( 1 + (0.970 + 0.239i)T \) |
| 47 | \( 1 + (-0.748 + 0.663i)T \) |
| 53 | \( 1 + (0.885 - 0.464i)T \) |
| 59 | \( 1 + (-0.120 + 0.992i)T \) |
| 61 | \( 1 + (-0.885 - 0.464i)T \) |
| 67 | \( 1 + (-0.748 + 0.663i)T \) |
| 71 | \( 1 + (0.568 + 0.822i)T \) |
| 73 | \( 1 + (0.354 + 0.935i)T \) |
| 79 | \( 1 + (-0.748 + 0.663i)T \) |
| 83 | \( 1 + (-0.568 + 0.822i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (-0.120 - 0.992i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.61923321374752414134190653777, −17.108064732775582169086485515018, −16.26188605971707675996851843378, −15.98847937455477745767301586866, −15.37664775291390752400880907191, −14.07156941275677106637642691179, −13.64755485469861523656407148673, −13.21161691372899835822801619593, −12.13731242294151685171938725382, −11.88981801787114868997902074815, −10.90287788268167616583491794637, −10.13742489717022561288752351902, −9.29779881943950639373191742774, −8.96447510734629573053775872916, −8.02655861004383121402753069852, −7.37641854393224132956251221794, −6.415617050840984188585102670283, −5.85416198658424566524970942824, −5.007101887033330416750686886899, −4.12445922369223821190602221431, −3.59383656953433153805243193657, −2.65319933952043049405001802298, −1.59371286675005093121123381435, −0.58170406297508871281357061800, −0.17583045892187268498278840892,
1.296752276145763289929176204164, 2.29661778411425386819097912331, 2.87800452297914211906189553922, 3.73578003655034468951636290469, 4.40120645993695744600432355055, 5.51093284656616889705989567979, 6.25524325782718028209990698824, 6.822470677624889285493038409579, 7.43060915176469066473807675015, 8.322252452040232504226302303652, 9.247815880888224650931305237700, 9.8323287949869959234302018058, 10.38083226322023295975414620748, 11.276541420583533205240596270013, 11.91960080002178092645650366640, 12.562643375143671781515625856591, 13.31533324846188839085659331990, 14.11200083762096312603826107395, 14.69798683310298743674327024017, 15.53744399423468002410563676546, 15.77493780210043652668107981353, 16.704784072322671077970248296471, 17.66809664628013753328273539636, 18.04935704219361048754311920188, 18.70648644175140659511262751152