| L(s)  = 1 | + (−0.885 + 0.464i)5-s     + (−0.354 + 0.935i)7-s         + (0.120 + 0.992i)11-s             + (0.354 − 0.935i)17-s     − 19-s         + 23-s     + (0.568 − 0.822i)25-s         + (0.120 − 0.992i)29-s     + (0.568 + 0.822i)31-s         + (−0.120 − 0.992i)35-s     + (0.568 + 0.822i)37-s         + (−0.748 + 0.663i)41-s     + (0.568 − 0.822i)43-s         + (0.970 − 0.239i)47-s     + (−0.748 − 0.663i)49-s    + ⋯ | 
| L(s)  = 1 | + (−0.885 + 0.464i)5-s     + (−0.354 + 0.935i)7-s         + (0.120 + 0.992i)11-s             + (0.354 − 0.935i)17-s     − 19-s         + 23-s     + (0.568 − 0.822i)25-s         + (0.120 − 0.992i)29-s     + (0.568 + 0.822i)31-s         + (−0.120 − 0.992i)35-s     + (0.568 + 0.822i)37-s         + (−0.748 + 0.663i)41-s     + (0.568 − 0.822i)43-s         + (0.970 − 0.239i)47-s     + (−0.748 − 0.663i)49-s    + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.389 + 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.389 + 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(\frac{1}{2})\) | \(\approx\) | \(1.088617384 + 0.7219151965i\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(1.088617384 + 0.7219151965i\) | 
    
        
      | \(L(1)\) | \(\approx\) | \(0.8862007425 + 0.2260724081i\) | 
    
      | \(L(1)\) | \(\approx\) | \(0.8862007425 + 0.2260724081i\) | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 2 | \( 1 \) | 
|  | 3 | \( 1 \) | 
|  | 13 | \( 1 \) | 
| good | 5 | \( 1 + (-0.885 + 0.464i)T \) | 
|  | 7 | \( 1 + (-0.354 + 0.935i)T \) | 
|  | 11 | \( 1 + (0.120 + 0.992i)T \) | 
|  | 17 | \( 1 + (0.354 - 0.935i)T \) | 
|  | 19 | \( 1 - T \) | 
|  | 23 | \( 1 + T \) | 
|  | 29 | \( 1 + (0.120 - 0.992i)T \) | 
|  | 31 | \( 1 + (0.568 + 0.822i)T \) | 
|  | 37 | \( 1 + (0.568 + 0.822i)T \) | 
|  | 41 | \( 1 + (-0.748 + 0.663i)T \) | 
|  | 43 | \( 1 + (0.568 - 0.822i)T \) | 
|  | 47 | \( 1 + (0.970 - 0.239i)T \) | 
|  | 53 | \( 1 + (-0.354 + 0.935i)T \) | 
|  | 59 | \( 1 + (0.885 - 0.464i)T \) | 
|  | 61 | \( 1 + (0.354 + 0.935i)T \) | 
|  | 67 | \( 1 + (0.970 - 0.239i)T \) | 
|  | 71 | \( 1 + (0.748 - 0.663i)T \) | 
|  | 73 | \( 1 + (-0.120 - 0.992i)T \) | 
|  | 79 | \( 1 + (0.970 - 0.239i)T \) | 
|  | 83 | \( 1 + (-0.748 - 0.663i)T \) | 
|  | 89 | \( 1 + T \) | 
|  | 97 | \( 1 + (-0.885 - 0.464i)T \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \  (1 - \alpha_{p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−18.59155041979159321670033736834, −17.18924153662594798154296916392, −17.11924273411814202134143240854, −16.27747397929544940306624427104, −15.799530568886126446860787812612, −14.87388995468517675063121035680, −14.35514185799945065977945504712, −13.40645607451923673112907701802, −12.843725003841024875448533113, −12.33952706221279248063502359472, −11.127717027480714942339983708130, −11.05018748191704405976770296604, −10.13620629710641941301954310372, −9.21759782569217840075975045522, −8.4620378418992972145772274789, −8.00155243348164865338460731000, −7.116069788791635088880240413468, −6.49097629144540824160684925913, −5.60173812751802012808902035714, −4.72153916040570998501949598287, −3.83751968373278968519815200634, −3.60172651178319755891620564400, −2.49820553866813793559335916766, −1.19277900687916826488716647214, −0.58959760368188677386263425010, 
0.735143447532392143062359056261, 2.08033938006337553711037756443, 2.73984548121600198367117200873, 3.439309656807625851197315497441, 4.45720459217454234117859522400, 4.94975960026758600707689773236, 6.02080887240038347999551737213, 6.75904893748230610800779770186, 7.30224575024731527650693343278, 8.17282316206536067281265577043, 8.818137319031634810286207275322, 9.61119058119661183540804120585, 10.281138884477087609351774846346, 11.12198861456622772026860192027, 11.884654915934859420349034975044, 12.24189815802084170659228279915, 12.97743539326078700474230973005, 13.87698844618170610103214443274, 14.76010921191674011388079178298, 15.2688111630163294251581129401, 15.61235543553151938305982163776, 16.499428674980998766473027442035, 17.22877326267513593111448728930, 18.03100092888489961774866718624, 18.74537403499474058281056262731
