L(s) = 1 | + (0.748 + 0.663i)5-s + (−0.970 − 0.239i)7-s + (0.568 + 0.822i)11-s + (0.970 + 0.239i)17-s − 19-s + 23-s + (0.120 + 0.992i)25-s + (0.568 − 0.822i)29-s + (0.120 − 0.992i)31-s + (−0.568 − 0.822i)35-s + (0.120 − 0.992i)37-s + (0.885 − 0.464i)41-s + (0.120 + 0.992i)43-s + (0.354 − 0.935i)47-s + (0.885 + 0.464i)49-s + ⋯ |
L(s) = 1 | + (0.748 + 0.663i)5-s + (−0.970 − 0.239i)7-s + (0.568 + 0.822i)11-s + (0.970 + 0.239i)17-s − 19-s + 23-s + (0.120 + 0.992i)25-s + (0.568 − 0.822i)29-s + (0.120 − 0.992i)31-s + (−0.568 − 0.822i)35-s + (0.120 − 0.992i)37-s + (0.885 − 0.464i)41-s + (0.120 + 0.992i)43-s + (0.354 − 0.935i)47-s + (0.885 + 0.464i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.956 + 0.293i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4056 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.956 + 0.293i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.943985371 + 0.2912489643i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.943985371 + 0.2912489643i\) |
\(L(1)\) |
\(\approx\) |
\(1.194809621 + 0.1293580503i\) |
\(L(1)\) |
\(\approx\) |
\(1.194809621 + 0.1293580503i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 5 | \( 1 + (0.748 + 0.663i)T \) |
| 7 | \( 1 + (-0.970 - 0.239i)T \) |
| 11 | \( 1 + (0.568 + 0.822i)T \) |
| 17 | \( 1 + (0.970 + 0.239i)T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + (0.568 - 0.822i)T \) |
| 31 | \( 1 + (0.120 - 0.992i)T \) |
| 37 | \( 1 + (0.120 - 0.992i)T \) |
| 41 | \( 1 + (0.885 - 0.464i)T \) |
| 43 | \( 1 + (0.120 + 0.992i)T \) |
| 47 | \( 1 + (0.354 - 0.935i)T \) |
| 53 | \( 1 + (-0.970 - 0.239i)T \) |
| 59 | \( 1 + (-0.748 - 0.663i)T \) |
| 61 | \( 1 + (0.970 - 0.239i)T \) |
| 67 | \( 1 + (0.354 - 0.935i)T \) |
| 71 | \( 1 + (-0.885 + 0.464i)T \) |
| 73 | \( 1 + (-0.568 - 0.822i)T \) |
| 79 | \( 1 + (0.354 - 0.935i)T \) |
| 83 | \( 1 + (0.885 + 0.464i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (0.748 - 0.663i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.58065682233065147085458317256, −17.54734969147986596845023397097, −17.04534641280864998394470168755, −16.35356013871554802198780857893, −16.01108191646955754340177335719, −14.97200898531781999730920032453, −14.220857294812633098043035233835, −13.66267704233938910943660747496, −12.832901423906785288314996725499, −12.48817912674618764121101512903, −11.68817244644285795031473928949, −10.67934031524237470082924060518, −10.13466192079844714349426648981, −9.25586599979072324455664245159, −8.89497557158660060639449939354, −8.1831760295669550151891139069, −7.02528189384153179845039777875, −6.37915243548188618894700638157, −5.79249828051936954700706687326, −5.065082188416381584354077826702, −4.19539405970191020999931871553, −3.18069670654151281413167283187, −2.70194386297507645522028900134, −1.45774188772505591027663296450, −0.81706779754404068861499853173,
0.74782764032226994076230861276, 1.88936063360621277505682171621, 2.55687477473917117241605973879, 3.41816500753405463656460059941, 4.11527894207922750058854932529, 5.06734242364520320137368732600, 6.15906728544268517066763456671, 6.33604857269131750064890736499, 7.22595826721994868079570338053, 7.84915714316270762030517424601, 9.113771593218453927673070035371, 9.48296312913615964006021484798, 10.21400582649805113046538951401, 10.71203111671920036401883998915, 11.620369061632797420154471548454, 12.53139106465792200565050301918, 12.97789709111135513833887330134, 13.69831506678442198848267388453, 14.558184727175764991337429868416, 14.88751312439679878964917724107, 15.75179119866511782712856007380, 16.59979652884714911163132250861, 17.25784132909247973807449159260, 17.58143887504519355728878318427, 18.66076849176881365802230631281