L(s) = 1 | + (0.923 − 0.382i)5-s + (0.382 + 0.923i)11-s + (−0.130 − 0.991i)13-s + (−0.866 + 0.5i)17-s + (0.793 − 0.608i)19-s + (0.707 + 0.707i)23-s + (0.707 − 0.707i)25-s + (0.608 + 0.793i)29-s + (−0.5 + 0.866i)31-s + (−0.130 + 0.991i)37-s + (−0.258 + 0.965i)41-s + (0.991 + 0.130i)43-s + (−0.866 + 0.5i)47-s + (0.608 − 0.793i)53-s + (0.707 + 0.707i)55-s + ⋯ |
L(s) = 1 | + (0.923 − 0.382i)5-s + (0.382 + 0.923i)11-s + (−0.130 − 0.991i)13-s + (−0.866 + 0.5i)17-s + (0.793 − 0.608i)19-s + (0.707 + 0.707i)23-s + (0.707 − 0.707i)25-s + (0.608 + 0.793i)29-s + (−0.5 + 0.866i)31-s + (−0.130 + 0.991i)37-s + (−0.258 + 0.965i)41-s + (0.991 + 0.130i)43-s + (−0.866 + 0.5i)47-s + (0.608 − 0.793i)53-s + (0.707 + 0.707i)55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.448 + 0.893i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.448 + 0.893i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9160425251 + 1.484278621i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9160425251 + 1.484278621i\) |
\(L(1)\) |
\(\approx\) |
\(1.198785426 + 0.09560027446i\) |
\(L(1)\) |
\(\approx\) |
\(1.198785426 + 0.09560027446i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (0.923 - 0.382i)T \) |
| 11 | \( 1 + (0.382 + 0.923i)T \) |
| 13 | \( 1 + (-0.130 - 0.991i)T \) |
| 17 | \( 1 + (-0.866 + 0.5i)T \) |
| 19 | \( 1 + (0.793 - 0.608i)T \) |
| 23 | \( 1 + (0.707 + 0.707i)T \) |
| 29 | \( 1 + (0.608 + 0.793i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (-0.130 + 0.991i)T \) |
| 41 | \( 1 + (-0.258 + 0.965i)T \) |
| 43 | \( 1 + (0.991 + 0.130i)T \) |
| 47 | \( 1 + (-0.866 + 0.5i)T \) |
| 53 | \( 1 + (0.608 - 0.793i)T \) |
| 59 | \( 1 + (-0.130 + 0.991i)T \) |
| 61 | \( 1 + (-0.991 + 0.130i)T \) |
| 67 | \( 1 + (-0.608 - 0.793i)T \) |
| 71 | \( 1 + (-0.707 + 0.707i)T \) |
| 73 | \( 1 + (0.258 - 0.965i)T \) |
| 79 | \( 1 + (-0.866 + 0.5i)T \) |
| 83 | \( 1 + (0.793 - 0.608i)T \) |
| 89 | \( 1 + (-0.258 - 0.965i)T \) |
| 97 | \( 1 + (-0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.07436710057844083839218479951, −17.42656854096767730406295607491, −16.67600861653944444160348905244, −16.248062444999767103080243534450, −15.31417157023810114507271328667, −14.493975965757907616092918766134, −13.89805350947295977129283346870, −13.58767183960133696230622250903, −12.64989888443970447372216532326, −11.80205281008155506121218493231, −11.147120128709479508063763670989, −10.56908400352347068830008691457, −9.62309163319268804598335526302, −9.15976997709565343420968253499, −8.51759106010039912549773969115, −7.39988921740824179466266343171, −6.78842218128106519585661703783, −6.07834538139729648154728871711, −5.492445332909049864400477823891, −4.53052067855439698608296807761, −3.74084683399194774591930904218, −2.77821429558924972819054332265, −2.15048196789743612963426159565, −1.24304128588051717724866150489, −0.2413299241901907786777855122,
1.11213796270863425852503854101, 1.58662561678935767395355519305, 2.66066057016850474938050563473, 3.28022761728518044866398758353, 4.55574136761331392655945173085, 4.9811445903502232938398881219, 5.759555150249714070370641040825, 6.61543624440662428609969740197, 7.195282538622036625649773402261, 8.12646398966669674032910279877, 8.987011973505088262275516075756, 9.42956731976660737804146489677, 10.23791694993621455181375591943, 10.77684535128149439513930478188, 11.74398872587988130114878353903, 12.48964771213977669215129395505, 13.11772760448882090578988767114, 13.56463217417211778888793920322, 14.51058202704836695623798796758, 15.07188352457012553915569407010, 15.77874141438591264985790105915, 16.56853648595311612159375700781, 17.35624131158679395192188261075, 17.84783537334914054476041973982, 18.105923147865478418922479173192