| L(s)  = 1  |   + (0.913 − 0.406i)2-s   + (−0.104 − 0.994i)3-s   + (0.669 − 0.743i)4-s   + 5-s   + (−0.5 − 0.866i)6-s   + (0.669 − 0.743i)7-s   + (0.309 − 0.951i)8-s   + (−0.978 + 0.207i)9-s   + (0.913 − 0.406i)10-s   + (−0.978 − 0.207i)11-s   + (−0.809 − 0.587i)12-s     + (0.309 − 0.951i)14-s   + (−0.104 − 0.994i)15-s   + (−0.104 − 0.994i)16-s   + (−0.978 + 0.207i)17-s   + (−0.809 + 0.587i)18-s  + ⋯ | 
 
| L(s)  = 1  |   + (0.913 − 0.406i)2-s   + (−0.104 − 0.994i)3-s   + (0.669 − 0.743i)4-s   + 5-s   + (−0.5 − 0.866i)6-s   + (0.669 − 0.743i)7-s   + (0.309 − 0.951i)8-s   + (−0.978 + 0.207i)9-s   + (0.913 − 0.406i)10-s   + (−0.978 − 0.207i)11-s   + (−0.809 − 0.587i)12-s     + (0.309 − 0.951i)14-s   + (−0.104 − 0.994i)15-s   + (−0.104 − 0.994i)16-s   + (−0.978 + 0.207i)17-s   + (−0.809 + 0.587i)18-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 403 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.507 - 0.861i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 403 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.507 - 0.861i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(\frac{1}{2})\)  | 
            \(\approx\) | 
             \(1.257921757 - 2.199594329i\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(1.257921757 - 2.199594329i\)  | 
    
    
        
      |  \(L(1)\)  | 
            \(\approx\) | 
       \(1.500974733 - 1.225527479i\)  | 
          
    
      |  \(L(1)\)  | 
            \(\approx\) | 
       \(1.500974733 - 1.225527479i\)  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 13 |  \( 1 \)  | 
 | 31 |  \( 1 \)  | 
| good | 2 |  \( 1 + (0.913 - 0.406i)T \)  | 
 | 3 |  \( 1 + (-0.104 - 0.994i)T \)  | 
 | 5 |  \( 1 + T \)  | 
 | 7 |  \( 1 + (0.669 - 0.743i)T \)  | 
 | 11 |  \( 1 + (-0.978 - 0.207i)T \)  | 
 | 17 |  \( 1 + (-0.978 + 0.207i)T \)  | 
 | 19 |  \( 1 + (-0.104 + 0.994i)T \)  | 
 | 23 |  \( 1 + (0.669 + 0.743i)T \)  | 
 | 29 |  \( 1 + (0.913 - 0.406i)T \)  | 
 | 37 |  \( 1 + (-0.5 + 0.866i)T \)  | 
 | 41 |  \( 1 + (0.913 - 0.406i)T \)  | 
 | 43 |  \( 1 + (-0.104 + 0.994i)T \)  | 
 | 47 |  \( 1 + (-0.809 + 0.587i)T \)  | 
 | 53 |  \( 1 + (0.309 - 0.951i)T \)  | 
 | 59 |  \( 1 + (0.913 + 0.406i)T \)  | 
 | 61 |  \( 1 + (-0.5 - 0.866i)T \)  | 
 | 67 |  \( 1 + (-0.5 + 0.866i)T \)  | 
 | 71 |  \( 1 + (-0.978 + 0.207i)T \)  | 
 | 73 |  \( 1 + (0.309 + 0.951i)T \)  | 
 | 79 |  \( 1 + (0.309 - 0.951i)T \)  | 
 | 83 |  \( 1 + (-0.809 - 0.587i)T \)  | 
 | 89 |  \( 1 + (-0.978 - 0.207i)T \)  | 
 | 97 |  \( 1 + (0.669 - 0.743i)T \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \  (1 - \alpha_{p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−24.65799219250687917214609495343, −23.76438989687405057611692487133, −22.67306643830144298301746648223, −21.995868262662606550716339786471, −21.23157810739682648340878629774, −20.91465887832283053475198400808, −19.86501383393144292072586316112, −18.063065467608462400697322326485, −17.58374180224148960707870401653, −16.537507758935734937293675382430, −15.60969320184011315930775660610, −15.03567349223321087085622076219, −14.15299979535276606509917132092, −13.2843139121799806162326902648, −12.29304303597558965186065973567, −11.109111921329869007223864255169, −10.534543617139827860607890365643, −9.11609282633843033792049169054, −8.449283502988252806153627749570, −6.94356828048943336953045138456, −5.85959223063384281892484615847, −5.05722599681253326322285011440, −4.54716766441387014147513085259, −2.86491673955307379070833022571, −2.27221787913938017026714546049, 
1.196075314312932836847299086550, 2.04848243186572030724554685722, 3.055815329940128421918750393279, 4.62375269967154424035534050619, 5.53285773606945826935244028088, 6.38782067038030385934206441796, 7.32542093297405565440509521198, 8.42178608564810470299085840892, 9.98153920691107677617711650005, 10.80962519522390020676520831227, 11.58786352962636726783719785761, 12.84460793358657871386120409595, 13.31481066293003360073345877450, 14.025254838125025114925583431797, 14.7813300820247192277745738918, 16.13526605919145483113184342448, 17.28462940095312358078835560830, 17.95476432549610217618828064203, 18.92510996572408603589164265977, 19.84795125325430495460081646705, 20.83818964232713578962514468658, 21.27976929225861396379975479522, 22.49699038391881196618228360771, 23.237833692999494427429008988269, 24.02864089928225827069383779303