| L(s) = 1 | + (0.866 − 0.5i)2-s + (0.5 − 0.866i)3-s + (0.5 − 0.866i)4-s + (−0.866 − 0.5i)5-s − i·6-s − i·7-s − i·8-s + (−0.5 − 0.866i)9-s − 10-s + i·11-s + (−0.5 − 0.866i)12-s + (−0.5 − 0.866i)14-s + (−0.866 + 0.5i)15-s + (−0.5 − 0.866i)16-s + 17-s + (−0.866 − 0.5i)18-s + ⋯ |
| L(s) = 1 | + (0.866 − 0.5i)2-s + (0.5 − 0.866i)3-s + (0.5 − 0.866i)4-s + (−0.866 − 0.5i)5-s − i·6-s − i·7-s − i·8-s + (−0.5 − 0.866i)9-s − 10-s + i·11-s + (−0.5 − 0.866i)12-s + (−0.5 − 0.866i)14-s + (−0.866 + 0.5i)15-s + (−0.5 − 0.866i)16-s + 17-s + (−0.866 − 0.5i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 403 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.954 - 0.299i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 403 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.954 - 0.299i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3148296128 - 2.052248475i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3148296128 - 2.052248475i\) |
| \(L(1)\) |
\(\approx\) |
\(1.094767198 - 1.267431016i\) |
| \(L(1)\) |
\(\approx\) |
\(1.094767198 - 1.267431016i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 13 | \( 1 \) |
| 31 | \( 1 \) |
| good | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 - iT \) |
| 11 | \( 1 + iT \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 + iT \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + (-0.866 - 0.5i)T \) |
| 41 | \( 1 + iT \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 - iT \) |
| 61 | \( 1 + (0.5 - 0.866i)T \) |
| 67 | \( 1 + iT \) |
| 71 | \( 1 + (0.866 - 0.5i)T \) |
| 73 | \( 1 + (-0.866 - 0.5i)T \) |
| 79 | \( 1 + (0.5 + 0.866i)T \) |
| 83 | \( 1 + (0.866 + 0.5i)T \) |
| 89 | \( 1 + (0.866 - 0.5i)T \) |
| 97 | \( 1 + (-0.866 - 0.5i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.64571653804410815291882799697, −23.9028276737467723879838440291, −22.85449788526693862571983333156, −22.10674596148947716864044994469, −21.512439331324601365507539026203, −20.74983046253867322378660321919, −19.54366419746973961647959209115, −18.95587839809494302226578419817, −17.52462453682737096704669390914, −16.32216228466621465890726294600, −15.700203171428224122964247962774, −15.201889852436625366428175799, −14.28568983028145706846591139872, −13.56856682222293595245544592725, −12.15053425568410366849007675762, −11.510969552525376001818144821034, −10.588832863916566469239844219385, −9.109551036238952273234796169953, −8.27522488940920425746155191709, −7.486834899547238003479357224609, −6.076819556727542000683632785344, −5.25330042867096082788820131712, −4.1178617681196901078963346877, −3.2327181999844730628066797087, −2.55819467188960616433055129026,
0.8889275347006580295224342465, 1.91239931006052167030432117736, 3.361769596560199566671070925916, 4.05193202656088930598608773722, 5.16978572239413654793378171904, 6.58888580971517953159145078161, 7.384286284725276631409168726737, 8.21965107377103073994218160993, 9.66510636681367263241475333662, 10.61829562487516778293997987359, 11.89095086180743439517330469535, 12.42158062850286625499205922605, 13.09439782927545490251360479714, 14.28885573090621267536162921530, 14.63998660941573577515517985545, 15.90471879711896521093967084165, 16.82414103134493968314207848960, 18.13350957705286040040758349680, 19.1004615365943029336083943691, 19.8199900401515223114438445569, 20.456103659880566557434703792093, 20.9538900410863191736620068894, 22.6226073315267346338926532653, 23.2527865707428108957657179196, 23.6896304187060552802353798087