L(s) = 1 | + (0.903 + 0.428i)2-s + (0.632 + 0.774i)4-s + (−0.316 + 0.948i)5-s + (−0.239 − 0.970i)7-s + (0.239 + 0.970i)8-s + (−0.692 + 0.721i)10-s + (−0.0804 + 0.996i)11-s + (0.200 − 0.979i)14-s + (−0.200 + 0.979i)16-s + (0.692 + 0.721i)17-s + (−0.866 + 0.5i)19-s + (−0.935 + 0.354i)20-s + (−0.5 + 0.866i)22-s + 23-s + (−0.799 − 0.600i)25-s + ⋯ |
L(s) = 1 | + (0.903 + 0.428i)2-s + (0.632 + 0.774i)4-s + (−0.316 + 0.948i)5-s + (−0.239 − 0.970i)7-s + (0.239 + 0.970i)8-s + (−0.692 + 0.721i)10-s + (−0.0804 + 0.996i)11-s + (0.200 − 0.979i)14-s + (−0.200 + 0.979i)16-s + (0.692 + 0.721i)17-s + (−0.866 + 0.5i)19-s + (−0.935 + 0.354i)20-s + (−0.5 + 0.866i)22-s + 23-s + (−0.799 − 0.600i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.902 + 0.430i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.902 + 0.430i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4479593550 + 1.979458065i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4479593550 + 1.979458065i\) |
\(L(1)\) |
\(\approx\) |
\(1.262244014 + 0.8710982769i\) |
\(L(1)\) |
\(\approx\) |
\(1.262244014 + 0.8710982769i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.903 + 0.428i)T \) |
| 5 | \( 1 + (-0.316 + 0.948i)T \) |
| 7 | \( 1 + (-0.239 - 0.970i)T \) |
| 11 | \( 1 + (-0.0804 + 0.996i)T \) |
| 17 | \( 1 + (0.692 + 0.721i)T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + (-0.428 + 0.903i)T \) |
| 31 | \( 1 + (-0.600 - 0.799i)T \) |
| 37 | \( 1 + (0.391 - 0.919i)T \) |
| 41 | \( 1 + (-0.464 + 0.885i)T \) |
| 43 | \( 1 + (-0.120 + 0.992i)T \) |
| 47 | \( 1 + (0.160 - 0.987i)T \) |
| 53 | \( 1 + (0.970 - 0.239i)T \) |
| 59 | \( 1 + (-0.979 + 0.200i)T \) |
| 61 | \( 1 + (-0.970 - 0.239i)T \) |
| 67 | \( 1 + (-0.935 + 0.354i)T \) |
| 71 | \( 1 + (0.999 - 0.0402i)T \) |
| 73 | \( 1 + (0.822 + 0.568i)T \) |
| 79 | \( 1 + (0.987 + 0.160i)T \) |
| 83 | \( 1 + (-0.999 - 0.0402i)T \) |
| 89 | \( 1 + (0.866 + 0.5i)T \) |
| 97 | \( 1 + (-0.663 + 0.748i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.48790822381044039581451984467, −19.51525197569071068996883546427, −19.04474742560918632623475974568, −18.37028793307475357550937749837, −16.93643582970436553571436715904, −16.450868827205367522099294553198, −15.467921861499443045057349922603, −15.21606391098210853239520305668, −14.01515729261971837948167095226, −13.372844021313593728540914634174, −12.62148164466924773304289885791, −12.03884342011465721399017022424, −11.364897913579840606561870626321, −10.55602647078436111839975521492, −9.36585863793222497265638438164, −8.89262697244501762922005567806, −7.88084503070136637475740671478, −6.770352279776614365469747606583, −5.80182125221421382684197419919, −5.27810138049519577970287932427, −4.48839083802374790516840879258, −3.43338315508064176086678283912, −2.741383098891394093285183916651, −1.65064449122722999756175961007, −0.52055504008809266517266276349,
1.63178090009183505786098593391, 2.674253591925893702154073346307, 3.650976613706947784475388003060, 4.09435672790478339349865577232, 5.12054569679959617909778147810, 6.19510862116570742570592088878, 6.853252922481673097531279241302, 7.4989105770333696481367079382, 8.097278713083763055602187932955, 9.49275174899189229369426687912, 10.56010183672023760504034815117, 10.88712481806343229245382815182, 11.953688443290693067932605552826, 12.76728964507580185423258149587, 13.3125810371853635751501074968, 14.381438444200038399431542264151, 14.819241433564442422834594948483, 15.311322442453400568778919437337, 16.53400591684983183436624417927, 16.85607935438548416206770886313, 17.808109928686713198973303617289, 18.653995207907787997716561909797, 19.686236460306645794153239764263, 20.14127601481301247759659325569, 21.140273987522045015807159161811