| L(s) = 1 | + (−0.632 − 0.774i)2-s + (−0.200 + 0.979i)4-s + (0.799 + 0.600i)5-s + (−0.885 + 0.464i)7-s + (0.885 − 0.464i)8-s + (−0.0402 − 0.999i)10-s + (0.987 + 0.160i)11-s + (0.919 + 0.391i)14-s + (−0.919 − 0.391i)16-s + (0.0402 − 0.999i)17-s + (0.5 − 0.866i)19-s + (−0.748 + 0.663i)20-s + (−0.5 − 0.866i)22-s − 23-s + (0.278 + 0.960i)25-s + ⋯ |
| L(s) = 1 | + (−0.632 − 0.774i)2-s + (−0.200 + 0.979i)4-s + (0.799 + 0.600i)5-s + (−0.885 + 0.464i)7-s + (0.885 − 0.464i)8-s + (−0.0402 − 0.999i)10-s + (0.987 + 0.160i)11-s + (0.919 + 0.391i)14-s + (−0.919 − 0.391i)16-s + (0.0402 − 0.999i)17-s + (0.5 − 0.866i)19-s + (−0.748 + 0.663i)20-s + (−0.5 − 0.866i)22-s − 23-s + (0.278 + 0.960i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.00413 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.00413 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7607703590 + 0.7576341229i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7607703590 + 0.7576341229i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8087623244 - 0.04242992586i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8087623244 - 0.04242992586i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 2 | \( 1 + (-0.632 - 0.774i)T \) |
| 5 | \( 1 + (0.799 + 0.600i)T \) |
| 7 | \( 1 + (-0.885 + 0.464i)T \) |
| 11 | \( 1 + (0.987 + 0.160i)T \) |
| 17 | \( 1 + (0.0402 - 0.999i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 + (0.632 + 0.774i)T \) |
| 31 | \( 1 + (-0.278 + 0.960i)T \) |
| 37 | \( 1 + (-0.692 - 0.721i)T \) |
| 41 | \( 1 + (0.568 + 0.822i)T \) |
| 43 | \( 1 + (-0.970 - 0.239i)T \) |
| 47 | \( 1 + (0.948 + 0.316i)T \) |
| 53 | \( 1 + (-0.885 + 0.464i)T \) |
| 59 | \( 1 + (-0.919 + 0.391i)T \) |
| 61 | \( 1 + (0.885 + 0.464i)T \) |
| 67 | \( 1 + (0.748 - 0.663i)T \) |
| 71 | \( 1 + (-0.996 + 0.0804i)T \) |
| 73 | \( 1 + (0.354 + 0.935i)T \) |
| 79 | \( 1 + (0.948 + 0.316i)T \) |
| 83 | \( 1 + (-0.996 - 0.0804i)T \) |
| 89 | \( 1 + (-0.5 - 0.866i)T \) |
| 97 | \( 1 + (-0.120 - 0.992i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.11845630713880425182002715463, −19.33216451756757267308040461706, −18.75164519735485755137997776040, −17.68488343405197411040631465374, −17.14758892192323585749105064392, −16.59607351679090486011566961114, −15.98851006409216307630898003263, −15.05895526104575811759539415487, −14.05315087394699242978490428233, −13.74182665024823043028934363382, −12.75136860186635406844115705056, −11.90763372945996030063629806832, −10.66677901496820101033868508266, −9.87693858698752233521721855445, −9.56391810315921963166307834773, −8.59309591193123457906059508922, −7.92419484332919351324183072894, −6.79873608078670413749871133994, −6.14630693055708326890169736317, −5.66983000228432546915608498158, −4.43486802043753934285217877779, −3.6401601405508597259202278602, −2.0580570254842002437442384943, −1.259388065280130894236667033973, −0.28377510613066313935023929795,
0.99559047133158561027373598514, 2.00756528864643462326027734680, 2.88151889447040497241567136245, 3.43448801517485530817276248577, 4.65234824505043342252375558902, 5.77295589235405242112637869205, 6.80622800784957321359498142606, 7.187556033105423198594358711322, 8.59519150607244641523602830035, 9.31149683150589609328328410790, 9.71724181981081761661037704466, 10.53848817825384264291758201675, 11.39954511487235418579764792786, 12.14773944315865760184960748901, 12.82015566356979115668898913737, 13.8292985145182880219687248906, 14.21575342957661248576460699806, 15.55573108216095507973753303228, 16.22928605863610002799508850519, 17.03955964369220403036265218264, 17.941359065370889345350615761606, 18.216122299500920232636614585776, 19.15125614450069045148200677683, 19.80303359004177415198805890758, 20.378528169278587460641266051148