L(s) = 1 | + (−0.939 + 0.342i)2-s + (0.766 − 0.642i)4-s + (0.766 + 0.642i)5-s + (−0.5 + 0.866i)8-s + (−0.939 − 0.342i)10-s − 11-s + (−0.939 − 0.342i)13-s + (0.173 − 0.984i)16-s + (0.173 − 0.984i)17-s + 20-s + (0.939 − 0.342i)22-s + (0.939 + 0.342i)23-s + (0.173 + 0.984i)25-s + 26-s + (0.766 − 0.642i)29-s + ⋯ |
L(s) = 1 | + (−0.939 + 0.342i)2-s + (0.766 − 0.642i)4-s + (0.766 + 0.642i)5-s + (−0.5 + 0.866i)8-s + (−0.939 − 0.342i)10-s − 11-s + (−0.939 − 0.342i)13-s + (0.173 − 0.984i)16-s + (0.173 − 0.984i)17-s + 20-s + (0.939 − 0.342i)22-s + (0.939 + 0.342i)23-s + (0.173 + 0.984i)25-s + 26-s + (0.766 − 0.642i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.937 + 0.347i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.937 + 0.347i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.254000612 + 0.2252174286i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.254000612 + 0.2252174286i\) |
\(L(1)\) |
\(\approx\) |
\(0.7855287969 + 0.1369561799i\) |
\(L(1)\) |
\(\approx\) |
\(0.7855287969 + 0.1369561799i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (-0.939 + 0.342i)T \) |
| 5 | \( 1 + (0.766 + 0.642i)T \) |
| 11 | \( 1 - T \) |
| 13 | \( 1 + (-0.939 - 0.342i)T \) |
| 17 | \( 1 + (0.173 - 0.984i)T \) |
| 23 | \( 1 + (0.939 + 0.342i)T \) |
| 29 | \( 1 + (0.766 - 0.642i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
| 41 | \( 1 + (0.939 - 0.342i)T \) |
| 43 | \( 1 + (0.173 - 0.984i)T \) |
| 47 | \( 1 + (0.173 + 0.984i)T \) |
| 53 | \( 1 + (0.766 - 0.642i)T \) |
| 59 | \( 1 + (-0.173 + 0.984i)T \) |
| 61 | \( 1 + (0.939 + 0.342i)T \) |
| 67 | \( 1 + (0.939 + 0.342i)T \) |
| 71 | \( 1 + (0.173 - 0.984i)T \) |
| 73 | \( 1 + (-0.766 - 0.642i)T \) |
| 79 | \( 1 + (-0.173 + 0.984i)T \) |
| 83 | \( 1 + (-0.5 - 0.866i)T \) |
| 89 | \( 1 + (-0.766 + 0.642i)T \) |
| 97 | \( 1 + (0.766 + 0.642i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.38650954814427287506286957514, −23.47030002064475387771635825436, −21.90492249938035638688651668563, −21.41368586347260322759163634410, −20.58226865156193004991800700378, −19.78058195635008967168436920301, −18.8224015711691850321225276015, −18.00436075823890785145891810804, −17.09382565358337792253880197787, −16.60838642465971397968492142304, −15.52774661826906139339059889821, −14.45334952106697164674983640882, −12.99192134227967207601550486538, −12.65155407375311254212007386090, −11.39896938615838689833966543259, −10.34578342944866743625747266341, −9.71998197856093508135928946488, −8.73869176040471168117782576339, −7.91549785279707908686272594464, −6.8007471700253725560919605590, −5.66076077994227819655291402265, −4.49170822860422932261194977768, −2.8753347824751022056112940959, −1.98037768929550917935183286323, −0.76120610990519622452618479344,
0.68719491040264996025327985609, 2.26032129271243150525307382661, 2.910572983888951383825609112170, 5.06466998460262951707141611191, 5.7894946805833606370445673788, 7.06685547338718966504072562690, 7.55704810733953281945560967837, 8.89269215143453886398888261866, 9.78681342995556388034367587247, 10.4593678270389922698472740306, 11.31305222801200757078517576037, 12.57851028886919434696179589393, 13.79723383118444608757441857275, 14.6397413815945488064039048710, 15.50493204575097727231165396850, 16.39991449904610682920671943969, 17.491683613707708671744611133105, 17.947039956140438602062141388653, 18.83343473173550475124236056764, 19.61979613468664264376558753681, 20.764285660395758836962147986891, 21.38866211332100300770691538658, 22.613874483864489623191274960692, 23.43369123203846651167518395230, 24.55611246776974582769096765125