| L(s) = 1 | + (0.826 − 0.563i)2-s + (−0.222 − 0.974i)3-s + (0.365 − 0.930i)4-s + (−0.222 − 0.974i)5-s + (−0.733 − 0.680i)6-s + (−0.222 − 0.974i)8-s + (−0.900 + 0.433i)9-s + (−0.733 − 0.680i)10-s + (0.0747 + 0.997i)11-s + (−0.988 − 0.149i)12-s + (0.0747 + 0.997i)13-s + (−0.900 + 0.433i)15-s + (−0.733 − 0.680i)16-s + (0.365 + 0.930i)17-s + (−0.5 + 0.866i)18-s + 19-s + ⋯ |
| L(s) = 1 | + (0.826 − 0.563i)2-s + (−0.222 − 0.974i)3-s + (0.365 − 0.930i)4-s + (−0.222 − 0.974i)5-s + (−0.733 − 0.680i)6-s + (−0.222 − 0.974i)8-s + (−0.900 + 0.433i)9-s + (−0.733 − 0.680i)10-s + (0.0747 + 0.997i)11-s + (−0.988 − 0.149i)12-s + (0.0747 + 0.997i)13-s + (−0.900 + 0.433i)15-s + (−0.733 − 0.680i)16-s + (0.365 + 0.930i)17-s + (−0.5 + 0.866i)18-s + 19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3871 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0826 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3871 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0826 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.776516960 - 1.635228421i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.776516960 - 1.635228421i\) |
| \(L(1)\) |
\(\approx\) |
\(1.187031235 - 0.9258295657i\) |
| \(L(1)\) |
\(\approx\) |
\(1.187031235 - 0.9258295657i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 79 | \( 1 \) |
| good | 2 | \( 1 + (0.826 - 0.563i)T \) |
| 3 | \( 1 + (-0.222 - 0.974i)T \) |
| 5 | \( 1 + (-0.222 - 0.974i)T \) |
| 11 | \( 1 + (0.0747 + 0.997i)T \) |
| 13 | \( 1 + (0.0747 + 0.997i)T \) |
| 17 | \( 1 + (0.365 + 0.930i)T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + (0.623 + 0.781i)T \) |
| 29 | \( 1 + (0.365 + 0.930i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.365 + 0.930i)T \) |
| 41 | \( 1 + (-0.222 - 0.974i)T \) |
| 43 | \( 1 + (0.955 - 0.294i)T \) |
| 47 | \( 1 + (-0.900 - 0.433i)T \) |
| 53 | \( 1 + (0.365 - 0.930i)T \) |
| 59 | \( 1 + (-0.222 + 0.974i)T \) |
| 61 | \( 1 + (-0.988 - 0.149i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.623 + 0.781i)T \) |
| 73 | \( 1 + (0.826 + 0.563i)T \) |
| 83 | \( 1 + (0.0747 - 0.997i)T \) |
| 89 | \( 1 + (0.826 + 0.563i)T \) |
| 97 | \( 1 + T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.41243756682465160243879476294, −17.98627976700013082394603426527, −17.12171406780237695161131429772, −16.357009211975145072768502167068, −15.90837492642446082135076509835, −15.33974820370645595447583633127, −14.61487024628589234677607324960, −14.123016869712025880368921990363, −13.548536370002280372134919538331, −12.46936766551373051739038471517, −11.769593649722116133550996730622, −11.051640066261888343042811915111, −10.72944913367709106566054731143, −9.71372309275280576037385584570, −8.927848801830628923346521348356, −7.97106047040788780865726476668, −7.49615319577841834533017729683, −6.40415510328046395336095181353, −5.97176199504550313166408015037, −5.17329776913692735595991878565, −4.54436160596932253084470053584, −3.41875491617645118488395994170, −3.2157406348661411831861165925, −2.54187692384374304469975970385, −0.629777416845042453071174733741,
0.9266542059829765438826932186, 1.58116389185120709103541307678, 2.11352015302940065084915720242, 3.27924302674103773186071692040, 4.065904879568020278800597521814, 4.91610556423506970998674254347, 5.44342404827339928699126376367, 6.23917716334236869235449200996, 7.10503817824940373845575590491, 7.59885121466112925596251557163, 8.69947824282925554415879154748, 9.35871293225135409330599534284, 10.148939940599959949771118725639, 11.171024665771032123846856253275, 11.78966195856112976211133807480, 12.19321498026452151902377956685, 12.89448276518159526812648463419, 13.33527203928021599442516623396, 14.08979265813956350815816860756, 14.77664767614268428073685763347, 15.550766012372528558048933672084, 16.40125263761070492135848254171, 16.99886385193657146668812634643, 17.77007542032678595828886507548, 18.59165183390687357727187307271