| L(s) = 1 | + (−0.995 + 0.0950i)5-s + (0.327 + 0.945i)11-s + (0.959 − 0.281i)13-s + (−0.928 − 0.371i)17-s + (0.928 − 0.371i)19-s + (0.981 − 0.189i)25-s + (−0.142 − 0.989i)29-s + (−0.0475 − 0.998i)31-s + (−0.580 + 0.814i)37-s + (−0.415 + 0.909i)41-s + (0.841 + 0.540i)43-s + (−0.5 − 0.866i)47-s + (0.723 − 0.690i)53-s + (−0.415 − 0.909i)55-s + (−0.235 + 0.971i)59-s + ⋯ |
| L(s) = 1 | + (−0.995 + 0.0950i)5-s + (0.327 + 0.945i)11-s + (0.959 − 0.281i)13-s + (−0.928 − 0.371i)17-s + (0.928 − 0.371i)19-s + (0.981 − 0.189i)25-s + (−0.142 − 0.989i)29-s + (−0.0475 − 0.998i)31-s + (−0.580 + 0.814i)37-s + (−0.415 + 0.909i)41-s + (0.841 + 0.540i)43-s + (−0.5 − 0.866i)47-s + (0.723 − 0.690i)53-s + (−0.415 − 0.909i)55-s + (−0.235 + 0.971i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3864 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.751 - 0.659i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3864 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.751 - 0.659i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.194045428 - 0.4499626059i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.194045428 - 0.4499626059i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9316211225 - 0.03493531605i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9316211225 - 0.03493531605i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
| 23 | \( 1 \) |
| good | 5 | \( 1 + (-0.995 + 0.0950i)T \) |
| 11 | \( 1 + (0.327 + 0.945i)T \) |
| 13 | \( 1 + (0.959 - 0.281i)T \) |
| 17 | \( 1 + (-0.928 - 0.371i)T \) |
| 19 | \( 1 + (0.928 - 0.371i)T \) |
| 29 | \( 1 + (-0.142 - 0.989i)T \) |
| 31 | \( 1 + (-0.0475 - 0.998i)T \) |
| 37 | \( 1 + (-0.580 + 0.814i)T \) |
| 41 | \( 1 + (-0.415 + 0.909i)T \) |
| 43 | \( 1 + (0.841 + 0.540i)T \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 + (0.723 - 0.690i)T \) |
| 59 | \( 1 + (-0.235 + 0.971i)T \) |
| 61 | \( 1 + (0.888 + 0.458i)T \) |
| 67 | \( 1 + (0.981 - 0.189i)T \) |
| 71 | \( 1 + (-0.654 - 0.755i)T \) |
| 73 | \( 1 + (-0.786 - 0.618i)T \) |
| 79 | \( 1 + (-0.723 - 0.690i)T \) |
| 83 | \( 1 + (-0.415 - 0.909i)T \) |
| 89 | \( 1 + (-0.0475 + 0.998i)T \) |
| 97 | \( 1 + (0.415 - 0.909i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.85154697259911223306713749091, −17.99478915650803492873032289105, −17.27054309385480513889105370376, −16.31457230991389945092620501174, −15.95654892040334162423363136697, −15.47659255611494518184551068793, −14.332405470786579743732372412651, −14.04361209637492681033302766685, −13.0683190138397785543997587304, −12.41299436821430799324778271701, −11.66328050991342347052691500743, −11.01433783245344753572201853306, −10.64440390924912928063192280059, −9.41569195029361422625024570369, −8.586403463011926159180009122486, −8.4465071401881537355930097731, −7.286289752779994188280020598917, −6.795288227938491343162101388454, −5.84054505425475588788860014836, −5.1444815422926894353169854060, −4.057099749306182680956650506225, −3.66676861137926168689315284122, −2.89256905112523516962330841864, −1.62627698610770100735935917249, −0.82913250023151866523444612144,
0.49301666153626838754575692307, 1.53329703243339350372992358493, 2.5761676904459978292424204280, 3.39092867573510049023863429320, 4.20371168156407639940742711613, 4.70204555104107171067391863237, 5.717468477000566833194381638382, 6.644650372385986160573403930664, 7.20776935023743712456370803236, 7.95113528852594439377252474903, 8.62362167719511591204567796819, 9.41663420077917918030011663401, 10.13978614824496022730744635163, 11.04681290524308399112086892393, 11.64613764295892797703275390134, 12.030607029349444299655276127017, 13.211427153787574169463324532237, 13.40610224813951572030532083386, 14.58153697474718138216545325174, 15.159409609037389312155878767, 15.694466502896195448751099368470, 16.26734987641305833978775051140, 17.13450030314880632491909257434, 17.94301983456282778415163532202, 18.36699326750509975502394872471