| L(s) = 1 | + (−0.207 − 0.978i)2-s + (0.994 − 0.104i)3-s + (−0.913 + 0.406i)4-s + (−0.309 − 0.951i)6-s + (0.587 + 0.809i)8-s + (0.978 − 0.207i)9-s + (−0.866 + 0.5i)12-s + (−0.951 − 0.309i)13-s + (0.669 − 0.743i)16-s + (0.207 − 0.978i)17-s + (−0.406 − 0.913i)18-s + (0.913 + 0.406i)19-s + (0.866 − 0.5i)23-s + (0.669 + 0.743i)24-s + (−0.104 + 0.994i)26-s + (0.951 − 0.309i)27-s + ⋯ |
| L(s) = 1 | + (−0.207 − 0.978i)2-s + (0.994 − 0.104i)3-s + (−0.913 + 0.406i)4-s + (−0.309 − 0.951i)6-s + (0.587 + 0.809i)8-s + (0.978 − 0.207i)9-s + (−0.866 + 0.5i)12-s + (−0.951 − 0.309i)13-s + (0.669 − 0.743i)16-s + (0.207 − 0.978i)17-s + (−0.406 − 0.913i)18-s + (0.913 + 0.406i)19-s + (0.866 − 0.5i)23-s + (0.669 + 0.743i)24-s + (−0.104 + 0.994i)26-s + (0.951 − 0.309i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 385 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.00178 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 385 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.00178 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.078271809 - 1.080199966i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.078271809 - 1.080199966i\) |
| \(L(1)\) |
\(\approx\) |
\(1.071844887 - 0.6288686563i\) |
| \(L(1)\) |
\(\approx\) |
\(1.071844887 - 0.6288686563i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 \) |
| good | 2 | \( 1 + (-0.207 - 0.978i)T \) |
| 3 | \( 1 + (0.994 - 0.104i)T \) |
| 13 | \( 1 + (-0.951 - 0.309i)T \) |
| 17 | \( 1 + (0.207 - 0.978i)T \) |
| 19 | \( 1 + (0.913 + 0.406i)T \) |
| 23 | \( 1 + (0.866 - 0.5i)T \) |
| 29 | \( 1 + (-0.809 - 0.587i)T \) |
| 31 | \( 1 + (0.669 + 0.743i)T \) |
| 37 | \( 1 + (0.994 + 0.104i)T \) |
| 41 | \( 1 + (0.809 - 0.587i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (0.406 - 0.913i)T \) |
| 53 | \( 1 + (-0.743 + 0.669i)T \) |
| 59 | \( 1 + (-0.913 + 0.406i)T \) |
| 61 | \( 1 + (-0.669 + 0.743i)T \) |
| 67 | \( 1 + (0.866 + 0.5i)T \) |
| 71 | \( 1 + (0.309 + 0.951i)T \) |
| 73 | \( 1 + (-0.406 - 0.913i)T \) |
| 79 | \( 1 + (-0.978 + 0.207i)T \) |
| 83 | \( 1 + (0.951 - 0.309i)T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.951 - 0.309i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.63072736953389793826017850358, −24.2818688673582031799621327167, −23.2076612144225352860399995452, −22.07755857540790969236221554378, −21.41556760376668871881202125837, −20.13671158197161444140740831220, −19.35039147188835468987944818642, −18.66519792824372671765573611049, −17.58285294957059302952137131789, −16.703842165465735701998090066876, −15.7501966337080647799020400793, −14.90332461450370595218331733310, −14.368058417987421622023421394277, −13.35092855823495724902513423908, −12.60299780983394245854181090052, −10.962461240937713002336809005785, −9.60340685030739298408880104272, −9.34715164494938334610679719236, −8.021468928280629694300970407755, −7.50298201944516217869423642731, −6.413201801377433677126460285545, −5.10189171524465064852574177744, −4.1735947739981725537242364646, −2.949602418755002106674120194311, −1.41281033370804867438697882363,
1.03511593678960955321794470552, 2.41087747819895442289278532700, 3.07583333195756224911854687180, 4.24043593139308135018986135927, 5.28296209630078842610487413065, 7.19483216927904692569016969504, 7.89673175206435391310259914959, 9.040901280151550203979313929307, 9.66492799457076519899205226205, 10.552974107061015999169942920671, 11.83269854665458108014038641207, 12.56625940749226308241289568377, 13.55562881353836632754104035443, 14.23896328090833808259270615829, 15.18738228555385375325662966608, 16.43873466904430645132775738442, 17.53178035980678217949851790777, 18.52712356329016330645241784508, 19.07874111955505693333844099523, 20.10718211121015227786631549169, 20.536644839991081737335678140423, 21.44963112655105606827709785720, 22.344189091587832664302302375673, 23.2055472822306077937059833805, 24.54551202926549519188567747022