| L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.866 + 0.5i)3-s + (0.5 + 0.866i)4-s + 6-s − i·8-s + (0.5 − 0.866i)9-s + (−0.866 − 0.5i)12-s + i·13-s + (−0.5 + 0.866i)16-s + (−0.866 + 0.5i)17-s + (−0.866 + 0.5i)18-s + (0.5 − 0.866i)19-s + (−0.866 − 0.5i)23-s + (0.5 + 0.866i)24-s + (0.5 − 0.866i)26-s + i·27-s + ⋯ |
| L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.866 + 0.5i)3-s + (0.5 + 0.866i)4-s + 6-s − i·8-s + (0.5 − 0.866i)9-s + (−0.866 − 0.5i)12-s + i·13-s + (−0.5 + 0.866i)16-s + (−0.866 + 0.5i)17-s + (−0.866 + 0.5i)18-s + (0.5 − 0.866i)19-s + (−0.866 − 0.5i)23-s + (0.5 + 0.866i)24-s + (0.5 − 0.866i)26-s + i·27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 385 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.581 + 0.813i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 385 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.581 + 0.813i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1906412739 + 0.3705085954i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.1906412739 + 0.3705085954i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5104534991 + 0.03800438941i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5104534991 + 0.03800438941i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 \) |
| good | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 13 | \( 1 + iT \) |
| 17 | \( 1 + (-0.866 + 0.5i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (-0.866 - 0.5i)T \) |
| 29 | \( 1 + T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + (0.866 + 0.5i)T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (-0.866 - 0.5i)T \) |
| 53 | \( 1 + (0.866 - 0.5i)T \) |
| 59 | \( 1 + (-0.5 - 0.866i)T \) |
| 61 | \( 1 + (-0.5 + 0.866i)T \) |
| 67 | \( 1 + (-0.866 + 0.5i)T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 + (0.866 - 0.5i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + iT \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + iT \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.325663055896023964289043067624, −23.08672340076598842085548514943, −22.69221630497707097661354377146, −21.3917193954566417948585880250, −20.13152618764985291078896809598, −19.48631411863557914541519326806, −18.25416002124360396832343922925, −17.98568751292619143573200456348, −17.07076180177784354711406133788, −16.13980466136988042912661792791, −15.528909917142105865848895227292, −14.26400535808695874672978446905, −13.23812758872363510229818946187, −12.07509812065130923254727045272, −11.23012651065347463991546826032, −10.34755047217737165157788220927, −9.49319022340414604431064902834, −8.06980993934871468230740118711, −7.54105015070781399379661041143, −6.32623610769355524860912426904, −5.72678147711747180568831634836, −4.57721381404678693288823994438, −2.57998677609989021592407677997, −1.28499965104393338193403816140, −0.21659507939507754990719682439,
1.056504960250936065799210607495, 2.42755853025251905477772954570, 3.863519561661294029060603825713, 4.7479687055207821018217335903, 6.32536917140309313051555311466, 6.961787156284900550439223781420, 8.39649118227320765615120619309, 9.29581666985041969814192055947, 10.15403915328520071086432223279, 11.01868314719199141129467861106, 11.747474626555442363656399964359, 12.53017623940528150305730300605, 13.750069167373490303874770638017, 15.24297793580041795578582296355, 16.062987301195417525746529758237, 16.73206831253788370589718982673, 17.71445282292329338376401068433, 18.18780906160940477440550976206, 19.37476277734295908547043809915, 20.14037314798810197174231668679, 21.26631151735801934405864780983, 21.750224774026254053433370180405, 22.58714721010243117860133114245, 23.80457185158364444884620665651, 24.52116963204857579196262779981