L(s) = 1 | + (0.610 + 0.791i)2-s + (0.913 + 0.406i)3-s + (−0.254 + 0.967i)4-s + (−0.327 − 0.945i)5-s + (0.235 + 0.971i)6-s + (−0.398 − 0.917i)7-s + (−0.921 + 0.389i)8-s + (0.669 + 0.743i)9-s + (0.548 − 0.836i)10-s + (−0.625 + 0.780i)12-s + (0.449 − 0.893i)13-s + (0.483 − 0.875i)14-s + (0.0855 − 0.996i)15-s + (−0.870 − 0.491i)16-s + (0.345 + 0.938i)17-s + (−0.179 + 0.983i)18-s + ⋯ |
L(s) = 1 | + (0.610 + 0.791i)2-s + (0.913 + 0.406i)3-s + (−0.254 + 0.967i)4-s + (−0.327 − 0.945i)5-s + (0.235 + 0.971i)6-s + (−0.398 − 0.917i)7-s + (−0.921 + 0.389i)8-s + (0.669 + 0.743i)9-s + (0.548 − 0.836i)10-s + (−0.625 + 0.780i)12-s + (0.449 − 0.893i)13-s + (0.483 − 0.875i)14-s + (0.0855 − 0.996i)15-s + (−0.870 − 0.491i)16-s + (0.345 + 0.938i)17-s + (−0.179 + 0.983i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.978 - 0.205i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.978 - 0.205i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.508074784 - 0.2598424650i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.508074784 - 0.2598424650i\) |
\(L(1)\) |
\(\approx\) |
\(1.585846093 + 0.4234918516i\) |
\(L(1)\) |
\(\approx\) |
\(1.585846093 + 0.4234918516i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (0.610 + 0.791i)T \) |
| 3 | \( 1 + (0.913 + 0.406i)T \) |
| 5 | \( 1 + (-0.327 - 0.945i)T \) |
| 7 | \( 1 + (-0.398 - 0.917i)T \) |
| 13 | \( 1 + (0.449 - 0.893i)T \) |
| 17 | \( 1 + (0.345 + 0.938i)T \) |
| 19 | \( 1 + (-0.969 - 0.244i)T \) |
| 23 | \( 1 + (0.993 - 0.113i)T \) |
| 29 | \( 1 + (0.696 - 0.717i)T \) |
| 37 | \( 1 + (-0.888 - 0.458i)T \) |
| 41 | \( 1 + (-0.991 + 0.132i)T \) |
| 43 | \( 1 + (0.820 - 0.572i)T \) |
| 47 | \( 1 + (0.610 - 0.791i)T \) |
| 53 | \( 1 + (0.953 - 0.299i)T \) |
| 59 | \( 1 + (-0.991 - 0.132i)T \) |
| 61 | \( 1 + (-0.959 + 0.281i)T \) |
| 67 | \( 1 + (0.723 - 0.690i)T \) |
| 71 | \( 1 + (-0.830 + 0.556i)T \) |
| 73 | \( 1 + (-0.217 - 0.976i)T \) |
| 79 | \( 1 + (0.483 - 0.875i)T \) |
| 83 | \( 1 + (0.00951 - 0.999i)T \) |
| 89 | \( 1 + (0.897 - 0.441i)T \) |
| 97 | \( 1 + (0.516 - 0.856i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.788180150892074038892292280, −18.51092390624490427464008557887, −17.65651724704572842697421482154, −16.28796226844014230109034971499, −15.46252386318297080966693317792, −15.12138649405706629834142434019, −14.30509375008925014200401581641, −13.92459385604378005595240573026, −13.168370487917941830611641175985, −12.3085314771473867781184556778, −11.96544920970007719375441990087, −11.09046489691287134887378340467, −10.39563813652268648811031666922, −9.51708159028466523330883329094, −8.998759136516678115389230448717, −8.29912711906336578842886594790, −7.098449226915897067706400763333, −6.6454503779098448837739469435, −5.92327187864336463333078810009, −4.83766251483165039219993837111, −3.97331561280300375619697104782, −3.213813185694768737573600949634, −2.741711478798538080643111667958, −2.074612837537332224757102804371, −1.14666480079410905527075737567,
0.51731875360507449978047901975, 1.78092728757187075051285761398, 2.99785509497460961875991514108, 3.637930818114496188514913708556, 4.20851053293354553429069891818, 4.83841905731900468443191767366, 5.68157099921641134372456100301, 6.60537191785314849363951315450, 7.46231134778708359002494483564, 8.01399339236051908150450718414, 8.67791009054493017674039157167, 9.129293468677713669428596086201, 10.27989223519901373831360083722, 10.73702585991029623767812691666, 12.038769981811101126851354076640, 12.73295868157026831530714702145, 13.29990869059732634660875529634, 13.63359639316863401259039622668, 14.5961961693337634275984409926, 15.275185863673598084011557307717, 15.66780713797426339454605344160, 16.42686966189986902465602154260, 17.06870550290580340520622478394, 17.432907706925390900849587871185, 18.72634226866961249104522207323