L(s) = 1 | + (0.0855 − 0.996i)2-s + (−0.978 + 0.207i)3-s + (−0.985 − 0.170i)4-s + (−0.935 + 0.353i)5-s + (0.123 + 0.992i)6-s + (0.997 + 0.0760i)7-s + (−0.254 + 0.967i)8-s + (0.913 − 0.406i)9-s + (0.272 + 0.962i)10-s + (0.999 − 0.0380i)12-s + (−0.0665 + 0.997i)13-s + (0.161 − 0.986i)14-s + (0.841 − 0.540i)15-s + (0.941 + 0.336i)16-s + (−0.995 + 0.0950i)17-s + (−0.327 − 0.945i)18-s + ⋯ |
L(s) = 1 | + (0.0855 − 0.996i)2-s + (−0.978 + 0.207i)3-s + (−0.985 − 0.170i)4-s + (−0.935 + 0.353i)5-s + (0.123 + 0.992i)6-s + (0.997 + 0.0760i)7-s + (−0.254 + 0.967i)8-s + (0.913 − 0.406i)9-s + (0.272 + 0.962i)10-s + (0.999 − 0.0380i)12-s + (−0.0665 + 0.997i)13-s + (0.161 − 0.986i)14-s + (0.841 − 0.540i)15-s + (0.941 + 0.336i)16-s + (−0.995 + 0.0950i)17-s + (−0.327 − 0.945i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.920 - 0.390i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.920 - 0.390i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.05464311102 - 0.2688176259i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.05464311102 - 0.2688176259i\) |
\(L(1)\) |
\(\approx\) |
\(0.5606435503 - 0.1773123298i\) |
\(L(1)\) |
\(\approx\) |
\(0.5606435503 - 0.1773123298i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (0.0855 - 0.996i)T \) |
| 3 | \( 1 + (-0.978 + 0.207i)T \) |
| 5 | \( 1 + (-0.935 + 0.353i)T \) |
| 7 | \( 1 + (0.997 + 0.0760i)T \) |
| 13 | \( 1 + (-0.0665 + 0.997i)T \) |
| 17 | \( 1 + (-0.995 + 0.0950i)T \) |
| 19 | \( 1 + (0.580 - 0.814i)T \) |
| 23 | \( 1 + (-0.0285 + 0.999i)T \) |
| 29 | \( 1 + (-0.736 + 0.676i)T \) |
| 37 | \( 1 + (-0.969 - 0.244i)T \) |
| 41 | \( 1 + (-0.327 - 0.945i)T \) |
| 43 | \( 1 + (-0.625 + 0.780i)T \) |
| 47 | \( 1 + (-0.921 + 0.389i)T \) |
| 53 | \( 1 + (-0.991 + 0.132i)T \) |
| 59 | \( 1 + (-0.327 + 0.945i)T \) |
| 61 | \( 1 + (0.516 - 0.856i)T \) |
| 67 | \( 1 + (-0.327 - 0.945i)T \) |
| 71 | \( 1 + (-0.995 - 0.0950i)T \) |
| 73 | \( 1 + (-0.851 - 0.524i)T \) |
| 79 | \( 1 + (0.449 + 0.893i)T \) |
| 83 | \( 1 + (-0.432 - 0.901i)T \) |
| 89 | \( 1 + (0.993 + 0.113i)T \) |
| 97 | \( 1 + (0.841 + 0.540i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.568600670495022411899273478792, −18.07901841293644774753372716763, −17.42144933838494759074118421768, −16.858701817416031979300289896754, −16.19492788458919263116097886596, −15.56233641541954200606192099315, −15.02737422663412913351945212907, −14.29700376891880830883248012827, −13.2599474858435468582476345198, −12.84316429569872421312437805982, −11.94841436002885651081973345567, −11.51624275220295394281571888172, −10.593937322034789637323462356998, −9.9465473386772115597323818641, −8.73938437788626487765871466472, −8.18990788028808344510009282248, −7.59632857912256599722041816089, −6.98678894990986432339137471405, −6.11767055992027419535967874298, −5.321227057226418257722625708353, −4.794210631913688012919474801378, −4.22159800191452634832029152515, −3.31580343694818136848492274768, −1.760561895207589415749355837465, −0.76895311657308942357594822448,
0.12863246554733121042292697606, 1.378768515781092703695542820752, 1.98873327950039407915777349985, 3.24532225076887590995084847305, 3.92561414850350923385863245752, 4.78988073327629674858564461084, 4.95531262079729601524403199218, 6.11730668793337534956024345575, 7.079134574349734783242989684906, 7.6820514564785293181001964052, 8.7901282792144223390050656501, 9.25728088765109918619361973233, 10.29038208362752015567084608775, 11.01559214266587575337348702068, 11.394952902765898133370280276067, 11.75563266505721867093090267117, 12.49648579656887228489446027015, 13.36134146124077141825467800196, 14.12259126360483513607020434898, 14.9152135124039640863281484227, 15.52472966559877403309946925605, 16.27922259856885673199074683571, 17.23772303921205982672075898330, 17.74808462249858059759690902398, 18.31713328639204751533751205820