| L(s) = 1 | + (0.774 − 0.633i)2-s + (−0.809 − 0.587i)3-s + (0.198 − 0.980i)4-s + (0.696 + 0.717i)5-s + (−0.998 + 0.0570i)6-s + (0.0855 + 0.996i)7-s + (−0.466 − 0.884i)8-s + (0.309 + 0.951i)9-s + (0.993 + 0.113i)10-s + (−0.736 + 0.676i)12-s + (−0.870 − 0.491i)13-s + (0.696 + 0.717i)14-s + (−0.142 − 0.989i)15-s + (−0.921 − 0.389i)16-s + (−0.959 + 0.281i)17-s + (0.841 + 0.540i)18-s + ⋯ |
| L(s) = 1 | + (0.774 − 0.633i)2-s + (−0.809 − 0.587i)3-s + (0.198 − 0.980i)4-s + (0.696 + 0.717i)5-s + (−0.998 + 0.0570i)6-s + (0.0855 + 0.996i)7-s + (−0.466 − 0.884i)8-s + (0.309 + 0.951i)9-s + (0.993 + 0.113i)10-s + (−0.736 + 0.676i)12-s + (−0.870 − 0.491i)13-s + (0.696 + 0.717i)14-s + (−0.142 − 0.989i)15-s + (−0.921 − 0.389i)16-s + (−0.959 + 0.281i)17-s + (0.841 + 0.540i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0615i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0615i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.796229232 - 0.05529940062i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.796229232 - 0.05529940062i\) |
| \(L(1)\) |
\(\approx\) |
\(1.204856963 - 0.3854134222i\) |
| \(L(1)\) |
\(\approx\) |
\(1.204856963 - 0.3854134222i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 11 | \( 1 \) |
| 31 | \( 1 \) |
| good | 2 | \( 1 + (0.774 - 0.633i)T \) |
| 3 | \( 1 + (-0.809 - 0.587i)T \) |
| 5 | \( 1 + (0.696 + 0.717i)T \) |
| 7 | \( 1 + (0.0855 + 0.996i)T \) |
| 13 | \( 1 + (-0.870 - 0.491i)T \) |
| 17 | \( 1 + (-0.959 + 0.281i)T \) |
| 19 | \( 1 + (-0.959 - 0.281i)T \) |
| 23 | \( 1 + (0.974 - 0.226i)T \) |
| 29 | \( 1 + (0.941 - 0.336i)T \) |
| 37 | \( 1 + (0.993 + 0.113i)T \) |
| 41 | \( 1 + (0.841 + 0.540i)T \) |
| 43 | \( 1 + (-0.985 + 0.170i)T \) |
| 47 | \( 1 + (-0.998 - 0.0570i)T \) |
| 53 | \( 1 + (0.516 - 0.856i)T \) |
| 59 | \( 1 + (0.841 - 0.540i)T \) |
| 61 | \( 1 + (-0.362 + 0.931i)T \) |
| 67 | \( 1 + (0.841 + 0.540i)T \) |
| 71 | \( 1 + (-0.959 - 0.281i)T \) |
| 73 | \( 1 + (0.974 - 0.226i)T \) |
| 79 | \( 1 + (0.897 - 0.441i)T \) |
| 83 | \( 1 + (0.0855 + 0.996i)T \) |
| 89 | \( 1 + (0.610 - 0.791i)T \) |
| 97 | \( 1 + (-0.142 + 0.989i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.13593335180908615395940436507, −17.57075640896115171126671183291, −16.976972507181847748175192936052, −16.69059103398537203839469183393, −16.03268106802226027292702439088, −15.20828277617494385298895867200, −14.52306960059497970741941060599, −13.85136609339068340303594548718, −13.05922177752171865919233968942, −12.628442277006943829923281538103, −11.795608082396560790705846159859, −11.069486551772019291938337115794, −10.37148450667286340060678281291, −9.50279175980287984589228365394, −8.88856843655849177134165184715, −7.9625272252036275765320693642, −6.86329742881752020118544232484, −6.62968251264620424800894001942, −5.70468949581384430615976252247, −4.86074614293851039592772710049, −4.570367553867221305595823966169, −3.911792731718334988748375967717, −2.775883500717235350464169825234, −1.73971168412439957239868856750, −0.49007951780381163309767279098,
0.90603910153943479707894316580, 2.15609752688998694773713344819, 2.29721668405641256587094805053, 3.14670944837324442790278545727, 4.53074462030118736957836834690, 5.04052878841887345881321148708, 5.77111027748836043776370974296, 6.5327799820211324744826244593, 6.74054736231748142733761413991, 7.96938736193099692224312586884, 8.99227321274354316339212492852, 9.87020180003473911032657619119, 10.4646509219240137098815260745, 11.19938991002457326262210536480, 11.62120059269299093462472204605, 12.511728064538599965416431334012, 13.043795056420213893556317274088, 13.44540308101209908066958714417, 14.64007999466692111456230734678, 14.87118027095305180109663973787, 15.6491080726809153478364648224, 16.62110656277708710154399044100, 17.572149576683788158215463657571, 17.94683650739126607013979461654, 18.611533958496458931099917259755