L(s) = 1 | + (−0.654 + 0.755i)2-s + (−0.104 − 0.994i)3-s + (−0.142 − 0.989i)4-s + (0.988 − 0.151i)5-s + (0.820 + 0.572i)6-s + (0.723 − 0.690i)7-s + (0.841 + 0.540i)8-s + (−0.978 + 0.207i)9-s + (−0.532 + 0.846i)10-s + (−0.969 + 0.244i)12-s + (−0.830 − 0.556i)13-s + (0.0475 + 0.998i)14-s + (−0.254 − 0.967i)15-s + (−0.959 + 0.281i)16-s + (0.00951 − 0.999i)17-s + (0.483 − 0.875i)18-s + ⋯ |
L(s) = 1 | + (−0.654 + 0.755i)2-s + (−0.104 − 0.994i)3-s + (−0.142 − 0.989i)4-s + (0.988 − 0.151i)5-s + (0.820 + 0.572i)6-s + (0.723 − 0.690i)7-s + (0.841 + 0.540i)8-s + (−0.978 + 0.207i)9-s + (−0.532 + 0.846i)10-s + (−0.969 + 0.244i)12-s + (−0.830 − 0.556i)13-s + (0.0475 + 0.998i)14-s + (−0.254 − 0.967i)15-s + (−0.959 + 0.281i)16-s + (0.00951 − 0.999i)17-s + (0.483 − 0.875i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.678 - 0.734i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.678 - 0.734i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5341781427 - 1.221676639i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5341781427 - 1.221676639i\) |
\(L(1)\) |
\(\approx\) |
\(0.8374533808 - 0.3371469112i\) |
\(L(1)\) |
\(\approx\) |
\(0.8374533808 - 0.3371469112i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (-0.654 + 0.755i)T \) |
| 3 | \( 1 + (-0.104 - 0.994i)T \) |
| 5 | \( 1 + (0.988 - 0.151i)T \) |
| 7 | \( 1 + (0.723 - 0.690i)T \) |
| 13 | \( 1 + (-0.830 - 0.556i)T \) |
| 17 | \( 1 + (0.00951 - 0.999i)T \) |
| 19 | \( 1 + (-0.217 - 0.976i)T \) |
| 23 | \( 1 + (-0.564 - 0.825i)T \) |
| 29 | \( 1 + (0.198 - 0.980i)T \) |
| 37 | \( 1 + (0.345 - 0.938i)T \) |
| 41 | \( 1 + (0.123 + 0.992i)T \) |
| 43 | \( 1 + (0.449 - 0.893i)T \) |
| 47 | \( 1 + (0.974 + 0.226i)T \) |
| 53 | \( 1 + (0.997 + 0.0760i)T \) |
| 59 | \( 1 + (0.123 - 0.992i)T \) |
| 61 | \( 1 + (0.974 + 0.226i)T \) |
| 67 | \( 1 + (0.981 + 0.189i)T \) |
| 71 | \( 1 + (-0.948 + 0.318i)T \) |
| 73 | \( 1 + (0.723 + 0.690i)T \) |
| 79 | \( 1 + (0.964 + 0.263i)T \) |
| 83 | \( 1 + (0.997 + 0.0760i)T \) |
| 89 | \( 1 + (-0.736 - 0.676i)T \) |
| 97 | \( 1 + (-0.998 + 0.0570i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.91404256940249968210481316167, −17.94125535170986066721774856048, −17.67377254615226209379623616938, −16.8372834832882242068647196623, −16.51407188199049125505898339269, −15.44713150117294910128188653679, −14.70293543414481866528002821711, −14.18142275216519710442101288684, −13.3457540580189777220770852437, −12.190441998712921539072087390897, −12.03735403953001539456584643912, −10.9037160099621700904454396934, −10.584932500347613863896960690996, −9.74161721809293855352296024452, −9.361839795460894798597561566574, −8.57216215780568087918329196539, −8.01332185358584924231813079699, −6.893082127818545810213168319850, −5.87665118124107039885393747356, −5.278659544302538945839313688, −4.40477363464087939487494453354, −3.68059840079445763601131069235, −2.690053990281858888254027718980, −2.06667209459131515934061954419, −1.33586673807697063098368803496,
0.547250133806343565176925205362, 1.00992681493217813064516538766, 2.34825793189682449507253964905, 2.37607430981738311038819788309, 4.30687668855990602813857432372, 5.14851607490624936057289027888, 5.595706232379285765557990736477, 6.56696694964993294210214638222, 7.03969425075228465480834256735, 7.74593094334796529052173978804, 8.35748849181162652965127821840, 9.170924055127653352609939809895, 9.87802059579921117882949520415, 10.63546800950739462908268816692, 11.27512926380624877437905490313, 12.189870195696324670203883285535, 13.1380023558538257219281318177, 13.6484121673001315669801096835, 14.28824419829747289630678781886, 14.70280431783816288383351217406, 15.7504029366484616472986405939, 16.67902387412209443966748264536, 17.15475101890955054070571360193, 17.72114902170220445586670137320, 18.04208564357648168031012100668