L(s) = 1 | + (0.516 + 0.856i)2-s + (−0.5 − 0.866i)3-s + (−0.466 + 0.884i)4-s + (0.964 + 0.263i)5-s + (0.483 − 0.875i)6-s + (0.380 − 0.924i)7-s + (−0.998 + 0.0570i)8-s + (−0.5 + 0.866i)9-s + (0.272 + 0.962i)10-s + (0.999 − 0.0380i)12-s + (−0.532 − 0.846i)13-s + (0.988 − 0.151i)14-s + (−0.254 − 0.967i)15-s + (−0.564 − 0.825i)16-s + (0.861 + 0.508i)17-s + (−0.999 + 0.0190i)18-s + ⋯ |
L(s) = 1 | + (0.516 + 0.856i)2-s + (−0.5 − 0.866i)3-s + (−0.466 + 0.884i)4-s + (0.964 + 0.263i)5-s + (0.483 − 0.875i)6-s + (0.380 − 0.924i)7-s + (−0.998 + 0.0570i)8-s + (−0.5 + 0.866i)9-s + (0.272 + 0.962i)10-s + (0.999 − 0.0380i)12-s + (−0.532 − 0.846i)13-s + (0.988 − 0.151i)14-s + (−0.254 − 0.967i)15-s + (−0.564 − 0.825i)16-s + (0.861 + 0.508i)17-s + (−0.999 + 0.0190i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.515 + 0.856i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.515 + 0.856i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.935721224 + 1.094736121i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.935721224 + 1.094736121i\) |
\(L(1)\) |
\(\approx\) |
\(1.311208386 + 0.3815786054i\) |
\(L(1)\) |
\(\approx\) |
\(1.311208386 + 0.3815786054i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (0.516 + 0.856i)T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 + (0.964 + 0.263i)T \) |
| 7 | \( 1 + (0.380 - 0.924i)T \) |
| 13 | \( 1 + (-0.532 - 0.846i)T \) |
| 17 | \( 1 + (0.861 + 0.508i)T \) |
| 19 | \( 1 + (0.953 + 0.299i)T \) |
| 23 | \( 1 + (-0.0285 + 0.999i)T \) |
| 29 | \( 1 + (0.415 + 0.909i)T \) |
| 37 | \( 1 + (-0.532 + 0.846i)T \) |
| 41 | \( 1 + (0.797 - 0.603i)T \) |
| 43 | \( 1 + (-0.625 + 0.780i)T \) |
| 47 | \( 1 + (-0.654 - 0.755i)T \) |
| 53 | \( 1 + (0.723 - 0.690i)T \) |
| 59 | \( 1 + (0.797 + 0.603i)T \) |
| 61 | \( 1 + (-0.921 + 0.389i)T \) |
| 67 | \( 1 + (-0.327 - 0.945i)T \) |
| 71 | \( 1 + (0.749 + 0.662i)T \) |
| 73 | \( 1 + (-0.761 + 0.647i)T \) |
| 79 | \( 1 + (-0.888 - 0.458i)T \) |
| 83 | \( 1 + (-0.179 + 0.983i)T \) |
| 89 | \( 1 + (0.993 + 0.113i)T \) |
| 97 | \( 1 + (-0.998 + 0.0570i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.46155393162807630394566536971, −17.89254826139107824759580528358, −17.25186423589020429107562299096, −16.359919411464782599857052598652, −15.7868616764588882081461686237, −14.80140097157898813882537486869, −14.38356807369731919824410311503, −13.80551541167997201370647667337, −12.80718064143224765732984827100, −11.98205407242310808443065360710, −11.82780830656683202104217720185, −10.87677507684585580120291630207, −10.17357002919049085094746511597, −9.44009510545607325217598926501, −9.250801177992215019780182714434, −8.32714189502466008889615601749, −6.86741607142525308042157307159, −5.9614946043805960364779836497, −5.53658113234101024389264992754, −4.81749414866575155368793651956, −4.37536743522495645956008576954, −3.15368439577357406594212439426, −2.55725207730436841530804529580, −1.72276208593910150941412679960, −0.680223850660442714800605487226,
0.93587395444488894973936055509, 1.70459761031861155092735635049, 2.90288518308723141320424551994, 3.51527273690332136056006464785, 4.80525716654996845215318622024, 5.40003509220989229209791416624, 5.833680843530877211608239378087, 6.78916276697545120766564233766, 7.27420921071335255481765113608, 7.869099311640590211228832913331, 8.58729242257342567379906149624, 9.81301809031762477599728505829, 10.287590017694772199629282580317, 11.262728628640374214347031807348, 12.03879770150823595814009303051, 12.75727661341661520165798849169, 13.35524849254363991744280009975, 13.90477440172177094064931305699, 14.42143436274380832099391389596, 15.10625765181931836087059128565, 16.24978708337327235108847937442, 16.789859918095270081447233249146, 17.326968409865419173646284942929, 17.95113457797056864866646928250, 18.20222620302336640498266327778